▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Introduction to Diophantine approximation and a generalisation of Roth's theorem

Paolo Dolce

May 2023

Joint with Francesco Zucconi

#### Goal.

More general versions of Roth's theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### **Goal.** Approximating $\xi \in \mathbb{R}$ with rationals

#### **Goal.** Approximating $\xi \in \mathbb{R}$ with rationals in a "good way".

#### **Goal.** Approximating $\xi \in \mathbb{R}$ with rationals in a "good way".

Naive remark.



#### **Goal.** Approximating $\xi \in \mathbb{R}$ with rationals in a "good way".

**Naive remark.** The error  $\left|\xi - \frac{r}{s}\right|$  is related to the denominator s.

**Goal.** Approximating  $\xi \in \mathbb{R}$  with rationals in a "good way".

**Naive remark.** The error  $\left|\xi - \frac{r}{s}\right|$  is related to the denominator s.

Assume s is fixed,



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

**Goal.** Approximating  $\xi \in \mathbb{R}$  with rationals in a "good way".

**Naive remark.** The error  $\left|\xi - \frac{r}{s}\right|$  is related to the denominator s.

Assume s is fixed, then by considering the subdivision of the real line given by  $\frac{1}{|s|}\mathbb{Z}$  we get:

$$\left|\xi - \frac{r}{s}\right| \le \frac{1}{2|s|} < \frac{1}{|s|}$$

**Goal.** Approximating  $\xi \in \mathbb{R}$  with rationals in a "good way".

**Naive remark.** The error  $\left|\xi - \frac{r}{s}\right|$  is related to the denominator s.

Assume s is fixed, then by considering the subdivision of the real line given by  $\frac{1}{|s|}\mathbb{Z}$  we get:

$$\left|\xi - \frac{r}{s}\right| \le \frac{1}{2|s|} < \frac{1}{|s|}$$



Figure: Spacing with s=3

#### Clearly the approximant can be much better than "expected".

Clearly the approximant can be much better than "expected". Famous example:

$$\pi \sim \frac{22}{7}$$

Clearly the approximant can be much better than "expected". Famous example:

$$\pi \sim \frac{22}{7}$$

$$\pi - rac{22}{7} < 7^{-3}$$
 but  $rac{1}{s} = rac{1}{7}$ 

Clearly the approximant can be much better than "expected". Famous example:

$$\pi \sim \frac{22}{7}$$

$$\pi - rac{22}{7} < 7^{-3}$$
 but  $rac{1}{s} = rac{1}{7}$ 

Is  $\frac{22}{7}$  just a "lucky approximant" of  $\pi$ ? Are there infinitely many other "good approximants"?

Clearly the approximant can be much better than "expected". Famous example:

$$\pi \sim \frac{22}{7}$$

$$\pi - rac{22}{7} < 7^{-3}$$
 but  $rac{1}{s} = rac{1}{7}$ 

Is  $\frac{22}{7}$  just a "lucky approximant" of  $\pi$ ? Are there infinitely many other "good approximants"?

We introduce a measure of the quality of approximants.

Clearly the approximant can be much better than "expected". Famous example:

$$\pi \sim \frac{22}{7}$$

$$\pi - rac{22}{7} < 7^{-3}$$
 but  $rac{1}{s} = rac{1}{7}$ 

Is  $\frac{22}{7}$  just a "lucky approximant" of  $\pi$ ? Are there infinitely many other "good approximants"?

We introduce a measure of the quality of approximants.

#### Definition (approximation exponent)

#### Definition (approximation exponent)

Let  $\xi \in \mathbb{R}$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Definition (approximation exponent)

Let  $\xi \in \mathbb{R}$ 

$$\tau(\xi) := \sup \left\{ t \in \mathbb{R} \colon 0 < \left| \xi - \frac{r}{s} \right| < |s|^{-t} \xrightarrow{\text{has infinitely}}_{\text{many coprime}} \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Definition (approximation exponent)

Let  $\xi \in \mathbb{R}$ 

$$\tau(\xi) := \sup \left\{ t \in \mathbb{R} \colon 0 < \left| \xi - \frac{r}{s} \right| < |s|^{-t} \underset{\text{solutions } (r,s) \in \mathbb{Z}^2}{\text{has infinitely}} \right\}$$

Roughly speaking the Definition says that  $\xi$  can be approximated in an "unlucky" way up to the order  $\tau(\xi)$ 

#### Definition (approximation exponent)

Let  $\xi \in \mathbb{R}$ 

$$\tau(\xi) := \sup \left\{ t \in \mathbb{R} \colon 0 < \left| \xi - \frac{r}{s} \right| < |s|^{-t} \underset{\text{solutions } (r,s) \in \mathbb{Z}^2}{\underset{\text{solutions } (r,s) \in \mathbb{Z}^2}{\text{solutions } (r,s) \in \mathbb{Z}^2}} \right\}$$

Roughly speaking the Definition says that  $\xi$  can be approximated in an "unlucky" way up to the order  $\tau(\xi)$  so in particular any other "better" approximation of  $\xi$  is indeed "lucky".

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

#### One easily shows that if $\xi \in \mathbb{Q}$ then $\tau(\xi) = 1$ .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

One easily shows that if  $\xi \in \mathbb{Q}$  then  $\tau(\xi) = 1$ .

Theorem (Dirichlet, 1840)

If  $\xi \in \mathbb{R} \setminus \mathbb{Q}$ , then  $\tau(\xi) \geq 2$ .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

```
One easily shows that if \xi \in \mathbb{Q} then \tau(\xi) = 1.
```

| Theorem (Dirichlet, 1840)                                                |  |
|--------------------------------------------------------------------------|--|
| If $\xi \in \mathbb{R} \setminus \mathbb{Q}$ , then $\tau(\xi) \geq 2$ . |  |

The proof is a nice application of the pigeonhole principle.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

As a consequence of Liouville approximation theorem we get the following:

As a consequence of Liouville approximation theorem we get the following:

#### Theorem (Liouville, 1844)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  an algebraic number of degree d,

As a consequence of Liouville approximation theorem we get the following:

#### Theorem (Liouville, 1844)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  an algebraic number of degree d, then  $\tau(\xi) \leq d$ 

As a consequence of Liouville approximation theorem we get the following:

#### Theorem (Liouville, 1844)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  an algebraic number of degree d, then  $\tau(\xi) \leq d$ 

There is a long story about trying to get smaller bounds:

As a consequence of Liouville approximation theorem we get the following:

#### Theorem (Liouville, 1844)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  an algebraic number of degree d, then  $\tau(\xi) \leq d$ 

There is a long story about trying to get smaller bounds:

• Thue: 
$$\tau(\xi) \leq 1 + \frac{d}{2}$$

As a consequence of Liouville approximation theorem we get the following:

### Theorem (Liouville, 1844) Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$ an algebraic number of degree d, then $\tau(\xi) \leq d$

There is a long story about trying to get smaller bounds:

• Thue: 
$$\tau(\xi) \leq 1 + \frac{d}{2}$$

• Siegel:  $\tau(\xi) \leq 2\sqrt{d}$ 

As a consequence of Liouville approximation theorem we get the following:

## Theorem (Liouville, 1844) Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$ an algebraic number of degree d, then $\tau(\xi) \leq d$

There is a long story about trying to get smaller bounds:

- Thue:  $\tau(\xi) \leq 1 + \frac{d}{2}$
- Siegel:  $\tau(\xi) \leq 2\sqrt{d}$
- Gelfond-Dyson:  $\tau(\xi) \leq \sqrt{2d}$

The optimal solution was given by Roth (awarded with the Fields medal):

The optimal solution was given by Roth (awarded with the Fields medal):

Theorem (Roth, 1955)



The optimal solution was given by Roth (awarded with the Fields medal):

#### Theorem (Roth, 1955)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  be an algebraic number,



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The optimal solution was given by Roth (awarded with the Fields medal):

Theorem (Roth, 1955)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  be an algebraic number, then  $\tau(\xi) = 2$ 

The optimal solution was given by Roth (awarded with the Fields medal):

Theorem (Roth, 1955)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  be an algebraic number, then  $\tau(\xi) = 2$ 

An equivalent formulation of the theorem is the following:

The optimal solution was given by Roth (awarded with the Fields medal):

Theorem (Roth, 1955)

Let  $\xi \in \mathbb{R} \setminus \mathbb{Q}$  be an algebraic number, then  $\tau(\xi) = 2$ 

An equivalent formulation of the theorem is the following:

#### Theorem (Roth)

Let  $\xi \in \mathbb{R}$  be an algebraic number, and let  $\varepsilon > 0$  be a real number. Then there exists a real constant  $C(\xi, \varepsilon) > 0$  such that for every pair of coprime integers (r, s) with  $s > C(\xi, \varepsilon)$ , it holds that:

$$\left|\xi - \frac{r}{s}\right| > |s|^{-(2+\varepsilon)} \tag{1.1}$$

ヘロマ 人物マ イヨマ イヨ
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Regarding the spectrum of the approximation exponent we have:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Regarding the spectrum of the approximation exponent we have:

| Type of $\xi$  | Appr. exp.            |
|----------------|-----------------------|
| Rational       | $\tau(\xi) = 1$       |
| Algebraic      | $\tau(\xi) = 2$       |
| Transcendental | $\tau(\xi) \ge 2$     |
| Liouville      | $\tau(\xi) = +\infty$ |
|                |                       |

Regarding the spectrum of the approximation exponent we have:

| Type of $\xi$  | Appr. exp.            |
|----------------|-----------------------|
| Rational       | $\tau(\xi) = 1$       |
| Algebraic      | $\tau(\xi) = 2$       |
| Transcendental | $\tau(\xi) \ge 2$     |
| Liouville      | $\tau(\xi) = +\infty$ |
|                |                       |

• For any  $\lambda \in [2, +\infty[$ , there exists  $\xi \in \mathbb{R}$  such that  $\tau(\xi) = \lambda$ .

Regarding the spectrum of the approximation exponent we have:

| Type of $\xi$  | Appr. exp.            |
|----------------|-----------------------|
| Rational       | $\tau(\xi) = 1$       |
| Algebraic      | $\tau(\xi) = 2$       |
| Transcendental | $\tau(\xi) \ge 2$     |
| Liouville      | $\tau(\xi) = +\infty$ |
|                |                       |

• For any  $\lambda \in [2, +\infty[$ , there exists  $\xi \in \mathbb{R}$  such that  $\tau(\xi) = \lambda$ .

• For almost all  $\xi \in \mathbb{R}$  in the sense of Lebesgue we have that  $\tau(\xi)=2.$ 

(ロ)、

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1).

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

### Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ .

### Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open.

## Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

### Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

What about the approximation exponent of special transcendental numbers?

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

What about the approximation exponent of special transcendental numbers?

 $\tau(e) = 2,$ 

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

What about the approximation exponent of special transcendental numbers?

 $\begin{aligned} \tau(e) &= 2, \\ \tau(\pi) &\leq 7.10320... \end{aligned}$ 

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

What about the approximation exponent of special transcendental numbers?

$$\begin{split} \tau(e) &= 2, \\ \tau(\pi) \leq 7.10320... \text{ achieved in 2020}, \end{split}$$

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

What about the approximation exponent of special transcendental numbers?

au(e) = 2,  $au(\pi) \le 7.10320...$  achieved in 2020,  $au(\log 2) \le 3.57455...$  achieved in 2010,

# Interesting problems

**Quantitative Roth's.** Number of solutions of the opposite of inequality (1.1). Partial results by Bombieri-Van der Poorten (1989), Corvaja and Evertse (1997).

**Effective Roth's.** Bounds on  $C(\xi, \varepsilon)$ . Still open. It would imply an effective version of Siegel theorem on integral points.

# What about the approximation exponent of special transcendental numbers?

$$\begin{split} \tau(e) &= 2, \\ \tau(\pi) \leq 7.10320... \text{ achieved in 2020}, \\ \tau(\log 2) \leq 3.57455... \text{ achieved in 2010}, \\ \tau(\log 3) \leq 5.11620... \text{ achieved in 2018} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ





k is any field of characteristic 0.



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



k is any field of characteristic  $0.\ \mathcal{V}_k$  is a set in bijection with a set of absolute values of k,



k is any field of characteristic 0.  $\mathcal{V}_k$  is a set in bijection with a set of absolute values of k, the map is denoted by  $v \mapsto |\cdot|_v$ .

# Corvaja (1997)

k is any field of characteristic 0.  $\mathcal{V}_k$  is a set in bijection with a set of absolute values of k, the map is denoted by  $v \mapsto |\cdot|_v$ .

Notion of (logarithmic) height for  $(k, \mathcal{V}_k)$ :

$$h(\alpha) := \sum_{v \in \mathcal{V}_k} \log^+ |\alpha|_v$$

# Corvaja (1997)

k is any field of characteristic 0.  $\mathcal{V}_k$  is a set in bijection with a set of absolute values of k, the map is denoted by  $v \mapsto |\cdot|_v$ .

Notion of (logarithmic) height for  $(k, \mathcal{V}_k)$ :

$$h(\alpha) := \sum_{v \in \mathcal{V}_k} \log^+ |\alpha|_v$$

**Assumption:** The product formula holds for  $(k, \mathcal{V}_k)$ :

$$\sum_{v \in \mathcal{V}_k} \log |\alpha|_v = 0$$

# Corvaja (1997)

k is any field of characteristic 0.  $\mathcal{V}_k$  is a set in bijection with a set of absolute values of k, the map is denoted by  $v \mapsto |\cdot|_v$ .

Notion of (logarithmic) height for  $(k, \mathcal{V}_k)$ :

$$h(\alpha) := \sum_{v \in \mathcal{V}_k} \log^+ |\alpha|_v$$

**Assumption:** The product formula holds for  $(k, \mathcal{V}_k)$ :

$$\sum_{v \in \mathcal{V}_k} \log |\alpha|_v = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,  $\alpha_1, \ldots, \alpha_n$  are algebraic over k,

# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,  $\alpha_1, \ldots, \alpha_n$  are algebraic over k,  $|\cdot|_{v_1}, \ldots, |\cdot|_{v_n}$  are adequate renormalised extensions on  $k(\alpha_i)$  of some absolute values on k.

# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,  $\alpha_1, \ldots, \alpha_n$  are algebraic over k,  $|\cdot|_{v_1}, \ldots, |\cdot|_{v_n}$  are adequate renormalised extensions on  $k(\alpha_i)$  of some absolute values on k. Then for any  $\varepsilon > 0$  there exist a constant C (depending on the fixed data),

# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,  $\alpha_1, \ldots, \alpha_n$  are algebraic over k,  $|\cdot|_{v_1}, \ldots, |\cdot|_{v_n}$  are adequate renormalised extensions on  $k(\alpha_i)$  of some absolute values on k. Then for any  $\varepsilon > 0$  there exist a constant C (depending on the fixed data), such that for all  $\beta \in k$  with  $h(\beta) > C$  it holds that:

$$\sum_{i=1}^{n} \log |\beta - \alpha_i|_{v_i} > -(2 + \varepsilon)h(\beta)$$

# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,  $\alpha_1, \ldots, \alpha_n$  are algebraic over k,  $|\cdot|_{v_1}, \ldots, |\cdot|_{v_n}$  are adequate renormalised extensions on  $k(\alpha_i)$  of some absolute values on k. Then for any  $\varepsilon > 0$  there exist a constant C (depending on the fixed data), such that for all  $\beta \in k$ with  $h(\beta) > C$  it holds that:

$$\sum_{i=1}^{n} \log |\beta - \alpha_i|_{v_i} > -(2 + \varepsilon)h(\beta)$$

• The field k is very general.

# Corvaja (1997)

#### Theorem

Let  $(k, \mathcal{V}_k)$  as above,  $\alpha_1, \ldots, \alpha_n$  are algebraic over k,  $|\cdot|_{v_1}, \ldots, |\cdot|_{v_n}$  are adequate renormalised extensions on  $k(\alpha_i)$  of some absolute values on k. Then for any  $\varepsilon > 0$  there exist a constant C (depending on the fixed data), such that for all  $\beta \in k$ with  $h(\beta) > C$  it holds that:

$$\sum_{i=1}^{n} \log |\beta - \alpha_i|_{v_i} > -(2 + \varepsilon)h(\beta)$$

• The field k is very general.

• Simultaneous approximation of n elements algebraic over k.

(ロ)、

### Adelic curves

Vojta in 2021 generalised Roth's theorem for arithmetic function fields

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## Adelic curves

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb Q$ 

### Adelic curves

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

# Adelic curves

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

We go further and do it for adelic curves (Chen-Moriwaki, 2020):

# Adelic curves

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

We go further and do it for <u>adelic curves</u> (Chen-Moriwaki, 2020):

#### Definition (adelic curves)

Let  $\mathbb{K}$  be a field of characteristic 0,
Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

We go further and do it for adelic curves (Chen-Moriwaki, 2020):

### Definition (adelic curves)

Let  $\mathbb K$  be a field of characteristic 0, let  $M_{\mathbb K}$  be the set of all absolute values of  $\mathbb K$ 

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

We go further and do it for adelic curves (Chen-Moriwaki, 2020):

### Definition (adelic curves)

Let  $\mathbb{K}$  be a field of characteristic 0, let  $M_{\mathbb{K}}$  be the set of all absolute values of  $\mathbb{K}$  and let  $\Omega = (\Omega, \mathcal{A}, \mu)$  be a measure space

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

We go further and do it for adelic curves (Chen-Moriwaki, 2020):

### Definition (adelic curves)

Let  $\mathbb K$  be a field of characteristic 0, let  $M_{\mathbb K}$  be the set of all absolute values of  $\mathbb K$  and let  $\Omega=(\Omega,\mathcal A,\mu)$  be a measure space endowed with a map

$$\begin{array}{rcl} \phi \colon \Omega & \to & M_{\mathbb{K}} \\ & \omega & \mapsto & |\cdot|_{\omega} := \phi(\omega) \,. \end{array}$$

such that for any  $a \in \mathbb{K}^{\times}$ , the function  $\omega \mapsto \log |a|_{\omega}$  lies in  $L^1(\Omega, \mu)$ .

Vojta in 2021 generalised Roth's theorem for arithmetic function fields i.e. a finitely generated estension of  $\mathbb{Q}$  by using Arakelov geometry.

We go further and do it for adelic curves (Chen-Moriwaki, 2020):

### Definition (adelic curves)

Let  $\mathbb K$  be a field of characteristic 0, let  $M_{\mathbb K}$  be the set of all absolute values of  $\mathbb K$  and let  $\Omega=(\Omega,\mathcal A,\mu)$  be a measure space endowed with a map

$$\begin{array}{rcl} \phi \colon \Omega & \to & M_{\mathbb{K}} \\ & \omega & \mapsto & |\cdot|_{\omega} := \phi(\omega) \,. \end{array}$$

such that for any  $a \in \mathbb{K}^{\times}$ , the function  $\omega \mapsto \log |a|_{\omega}$  lies in  $L^{1}(\Omega, \mu)$ . The triple  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is called an adelic curve.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## Adelic curves

### Definition

An adelic curve  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is said to be <u>proper</u> if for any  $a \in \mathbb{K}^{\times}$ :  $\int_{\Omega} \log |a|_{\omega} \, d\mu(\omega) = 0 \,.$ 

### Definition

An adelic curve  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is said to be <u>proper</u> if for any  $a \in \mathbb{K}^{\times}$ :  $\int_{\Omega} \log |a|_{\omega} \, d\mu(\omega) = 0 \,.$ 

### Definition

 $\mathbb{X}=(\mathbb{K},\Omega,\phi)$  is a proper adelic curve;  $\overline{\mathbb{K}}$  is an algebraic closure of  $\mathbb{K}.$ 

### Definition

An adelic curve  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is said to be <u>proper</u> if for any  $a \in \mathbb{K}^{\times}$ :  $\int_{\Omega} \log |a|_{\omega} \, d\mu(\omega) = 0 \,.$ 

### Definition

 $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is a proper adelic curve;  $\overline{\mathbb{K}}$  is an algebraic closure of  $\mathbb{K}$ . We have a proper adelic curve  $\overline{\mathbb{X}} = (\overline{\mathbb{K}}, \overline{\Omega}, \overline{\phi})$ ,

### Definition

An adelic curve  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is said to be <u>proper</u> if for any  $a \in \mathbb{K}^{\times}$ :  $\int_{\Omega} \log |a|_{\omega} \, d\mu(\omega) = 0 \,.$ 

### Definition

 $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is a proper adelic curve;  $\overline{\mathbb{K}}$  is an algebraic closure of  $\mathbb{K}$ . We have a proper adelic curve  $\overline{\mathbb{X}} = (\overline{\mathbb{K}}, \overline{\Omega}, \overline{\phi})$ , the <u>(naive)</u> height of an element  $a \in \overline{\mathbb{K}}^{\times}$  is:

### Definition

An adelic curve  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is said to be <u>proper</u> if for any  $a \in \mathbb{K}^{\times}$ :  $\int_{\Omega} \log |a|_{\omega} \, d\mu(\omega) = 0 \,.$ 

### Definition

 $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is a proper adelic curve;  $\overline{\mathbb{K}}$  is an algebraic closure of  $\mathbb{K}$ . We have a proper adelic curve  $\overline{\mathbb{X}} = (\overline{\mathbb{K}}, \overline{\Omega}, \overline{\phi})$ , the <u>(naive)</u> height of an element  $a \in \overline{\mathbb{K}}^{\times}$  is:

$$h_{\mathbb{X}}(a) := \int_{\overline{\Omega}} \log^+ |a|_{\nu} \, d\chi(\nu) \, .$$

### Definition

An adelic curve  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is said to be <u>proper</u> if for any  $a \in \mathbb{K}^{\times}$ :  $\int_{\Omega} \log |a|_{\omega} \, d\mu(\omega) = 0 \,.$ 

### Definition

 $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  is a proper adelic curve;  $\overline{\mathbb{K}}$  is an algebraic closure of  $\mathbb{K}$ . We have a proper adelic curve  $\overline{\mathbb{X}} = (\overline{\mathbb{K}}, \overline{\Omega}, \overline{\phi})$ , the <u>(naive)</u> height of an element  $a \in \overline{\mathbb{K}}^{\times}$  is:

$$h_{\mathbb{X}}(a) := \int_{\overline{\Omega}} \log^+ |a|_{\nu} \, d\chi(\nu) \, .$$

where  $\nu$  denotes a generic element of  $\overline{\Omega}$  and  $\chi$  is the measure on  $\overline{\Omega}$ .

Classical Diophantine approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Examples of proper adelic curves

### Number fields

Classical Diophantine approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Examples of proper adelic curves

• Number fields or more in general "Corvaja's fields"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Examples of proper adelic curves

- Number fields or more in general "Corvaja's fields"
- Function fields of polarized algebraic varieties.

## Examples of proper adelic curves

- Number fields or more in general "Corvaja's fields"
- Function fields of polarized algebraic varieties.
- Function fields of polarized arithmetic varieties.

## Examples of proper adelic curves

- Number fields or more in general "Corvaja's fields"
- Function fields of polarized algebraic varieties.
- Function fields of polarized arithmetic varieties. (Vojta's case).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



**Question:** Does a version of the Roth theorem hold for proper adelic curves?



**Question:** Does a version of the Roth theorem hold for proper adelic curves?

In general there is no hope;





**Question:** Does a version of the Roth theorem hold for proper adelic curves?

In general there is no hope; the functions  $\omega \mapsto \log |a|_{\omega}$  for  $a \in \mathbb{K}^{\times}$  can be too wild.





**Question:** Does a version of the Roth theorem hold for proper adelic curves?

In general there is no hope; the functions  $\omega \mapsto \log |a|_{\omega}$  for  $a \in \mathbb{K}^{\times}$  can be too wild. We need more assumptions on such functions:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●



**Question:** Does a version of the Roth theorem hold for proper adelic curves?

In general there is no hope; the functions  $\omega \mapsto \log |a|_{\omega}$  for  $a \in \mathbb{K}^{\times}$  can be too wild. We need more assumptions on such functions:

• *µ*-equicontinuity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



**Question:** Does a version of the Roth theorem hold for proper adelic curves?

In general there is no hope; the functions  $\omega \mapsto \log |a|_{\omega}$  for  $a \in \mathbb{K}^{\times}$  can be too wild. We need more assumptions on such functions:

• *µ*-equicontinuity

uniform integrability

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## D.-Zucconi

We give two possible generalisations of Roth's theorem.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## D.-Zucconi

We give two possible generalisations of Roth's theorem. Assuming  $\mu\text{-}\text{equicontinuity:}$ 

We give two possible generalisations of Roth's theorem. Assuming  $\mu$ -equicontinuity:

### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# D.-Zucconi

We give two possible generalisations of Roth's theorem. Assuming  $\mu$ -equicontinuity:

### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition. Let  $S = S_1 \sqcup S_2 \sqcup \ldots \sqcup S_n$  be the disjoint union of measurable subsets of  $\Omega$  with finite measure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# D.-Zucconi

We give two possible generalisations of Roth's theorem. Assuming  $\mu$ -equicontinuity:

### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition. Let  $S = S_1 \sqcup S_2 \sqcup \ldots \sqcup S_n$  be the disjoint union of measurable subsets of  $\Omega$  with finite measure. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ ,

We give two possible generalisations of Roth's theorem. Assuming  $\mu$ -equicontinuity:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition. Let  $S = S_1 \sqcup S_2 \sqcup \ldots \sqcup S_n$  be the disjoint union of measurable subsets of  $\Omega$  with finite measure. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ , then for any  $\varepsilon > 0$  there exists a real constant C > 0 (depending on the fixed data) such that for any  $\beta \in \mathbb{K}$  with  $h_{\mathbb{X}}(\beta) > C$  it holds that:

We give two possible generalisations of Roth's theorem. Assuming  $\mu$ -equicontinuity:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition. Let  $S = S_1 \sqcup S_2 \sqcup \ldots \sqcup S_n$  be the disjoint union of measurable subsets of  $\Omega$  with finite measure. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ , then for any  $\varepsilon > 0$  there exists a real constant C > 0 (depending on the fixed data) such that for any  $\beta \in \mathbb{K}$  with  $h_{\mathbb{X}}(\beta) > C$  it holds that:

$$\sum_{i=1}^{n} \int_{S_{i}} \log^{-} |\beta - \alpha_{i}|_{\omega} d\mu(\omega) > -(2 + \varepsilon) h_{\mathbb{X}}(\beta).$$
(2.1)

We give two possible generalisations of Roth's theorem. Assuming  $\mu$ -equicontinuity:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition. Let  $S = S_1 \sqcup S_2 \sqcup \ldots \sqcup S_n$  be the disjoint union of measurable subsets of  $\Omega$  with finite measure. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ , then for any  $\varepsilon > 0$  there exists a real constant C > 0 (depending on the fixed data) such that for any  $\beta \in \mathbb{K}$  with  $h_{\mathbb{X}}(\beta) > C$  it holds that:

$$\sum_{i=1}^{n} \int_{S_i} \log^{-} |\beta - \alpha_i|_{\omega} d\mu(\omega) > -(2 + \varepsilon) h_{\mathbb{X}}(\beta).$$
(2.1)

Playing a bit with the theory of extensions of absolute values one can show that this theorem implies Corvaja's result.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## D.-Zucconi

Assuming  $\mu$ -equicontinuity (outside from a set of small measure) and uniform integrability:

Assuming  $\mu$ -equicontinuity (outside from a set of small measure) and uniform integrability:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition and the uniform integrability condition.

Assuming  $\mu$ -equicontinuity (outside from a set of small measure) and uniform integrability:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition and the uniform integrability condition. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ .

Assuming  $\mu$ -equicontinuity (outside from a set of small measure) and uniform integrability:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition and the uniform integrability condition. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ . Let S be a measurable subset of  $\Omega$  of finite measure.

Assuming  $\mu$ -equicontinuity (outside from a set of small measure) and uniform integrability:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition and the uniform integrability condition. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ . Let S be a measurable subset of  $\Omega$  of finite measure. Then for any  $\varepsilon > 0$  and any  $c \in \mathbb{R}$  there exists a real constant C > 0 (depending on the fixed data) such that for any  $\beta \in \mathbb{K}$  with  $h_{\mathbb{X}}(\beta) > C$  it holds that:

Assuming  $\mu$ -equicontinuity (outside from a set of small measure) and uniform integrability:

#### Theorem

Let  $\mathbb{X} = (\mathbb{K}, \Omega, \phi)$  be a proper adelic curve satisfying the  $\mu$ -equicontinuity condition and the uniform integrability condition. Fix some distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ . Let S be a measurable subset of  $\Omega$  of finite measure. Then for any  $\varepsilon > 0$  and any  $c \in \mathbb{R}$  there exists a real constant C > 0 (depending on the fixed data) such that for any  $\beta \in \mathbb{K}$  with  $h_{\mathbb{X}}(\beta) > C$  it holds that:

$$\int_{S} \min_{1 \le i \le n} \left( \log^{-} |\beta - \alpha_i|_{\omega} \right) d\mu(\omega) > -(2 + \varepsilon) h_{\mathbb{X}}(\beta) + c \quad (2.2)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## Some remarks

• The highly non-trivial work of Vojta consists in showing that arithmetic function fields satisfies the two technical hypotheses.
## Some remarks

- The highly non-trivial work of Vojta consists in showing that arithmetic function fields satisfies the two technical hypotheses.
- In Corvaja's setting the validity of the technical hypotheses is trivial, since we have the counting measure.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Some remarks

- The highly non-trivial work of Vojta consists in showing that arithmetic function fields satisfies the two technical hypotheses.
- In Corvaja's setting the validity of the technical hypotheses is trivial, since we have the counting measure.
- $\overline{\mathbb{Q}}$  is an adelic curve

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Some remarks

- The highly non-trivial work of Vojta consists in showing that arithmetic function fields satisfies the two technical hypotheses.
- In Corvaja's setting the validity of the technical hypotheses is trivial, since we have the counting measure.
- $\overline{\mathbb{Q}}$  is an adelic curve but it is not hard to show that Roth's theorem fails.

## Some Remarks

**Overview of our proof**:



## Some Remarks

#### **Overview of our proof**:

The existence of an "interpolating polynomial"  $\delta$  for  $\alpha_1, \ldots, \alpha_n$ allows to write some integral bounds for measurable functions on  $\theta: \Omega \to \mathbb{R}_{\geq 0}$  satisfying some technical properties with respect to heights of the  $\alpha_i$ 's and  $\beta$ .

## Some Remarks

#### **Overview of our proof**:

The existence of an "interpolating polynomial"  $\delta$  for  $\alpha_1, \ldots, \alpha_n$ allows to write some integral bounds for measurable functions on  $\theta: \Omega \to \mathbb{R}_{\geq 0}$  satisfying some technical properties with respect to heights of the  $\alpha_i$ 's and  $\beta$ . Assuming that Roth's theorem is false leads to the construction of a measurable function that contradicts such integral bounds.

## Some Remarks

#### **Overview of our proof**:

The existence of an "interpolating polynomial"  $\delta$  for  $\alpha_1, \ldots, \alpha_n$ allows to write some integral bounds for measurable functions on  $\theta: \Omega \to \mathbb{R}_{\geq 0}$  satisfying some technical properties with respect to heights of the  $\alpha_i$ 's and  $\beta$ . Assuming that Roth's theorem is false leads to the construction of a measurable function that contradicts such integral bounds. The main point consists in the construction of such function;

## Some Remarks

#### **Overview of our proof**:

The existence of an "interpolating polynomial"  $\delta$  for  $\alpha_1, \ldots, \alpha_n$ allows to write some integral bounds for measurable functions on  $\theta: \Omega \to \mathbb{R}_{\geq 0}$  satisfying some technical properties with respect to heights of the  $\alpha_i$ 's and  $\beta$ . Assuming that Roth's theorem is false leads to the construction of a measurable function that contradicts such integral bounds. The main point consists in the construction of such function; and this is exactly where we need the additional technical conditions on the adelic curve.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



• A quantitative version of Roth's theorem for adelic curves.

# Open questions

• A quantitative version of Roth's theorem for adelic curves. We hope for an upper bound on the number of "lucky approximants" with big enough heights.

- A quantitative version of Roth's theorem for adelic curves. We hope for an upper bound on the number of "lucky approximants" with big enough heights.
- (Hard).

- A quantitative version of Roth's theorem for adelic curves. We hope for an upper bound on the number of "lucky approximants" with big enough heights.
- (Hard). A version of the Schmidt subspace theorem for adelic curves.

- A quantitative version of Roth's theorem for adelic curves. We hope for an upper bound on the number of "lucky approximants" with big enough heights.
- (Hard). A version of the Schmidt subspace theorem for adelic curves. Here the obstruction is the absence of Minkowski's theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# Thank You