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Goal.

Approximating ξ ∈ R with rationals in a “good way”.

Naive remark. The error
∣∣ξ − r

s

∣∣ is related to the denominator s.

Assume s is fixed, then by considering the subdivision of the real
line given by 1

|s|Z we get:∣∣∣ξ − r

s

∣∣∣ ≤ 1

2|s|
<

1

|s|

Figure: Spacing with s=3
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Clearly the approximant can be much better than “expected”.

Famous example:

π ∼ 22

7

π − 22

7
< 7−3 but

1

s
=

1

7

Is 22
7 just a “lucky approximant” of π? Are there infinitely many

other “good approximants”?

We introduce a measure of the quality of approximants.
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Definition (approximation exponent)

Let ξ ∈ R

τ(ξ) := sup

{
t ∈ R : 0 <

∣∣∣ξ − r

s

∣∣∣ < |s|−t
has infinitely
many coprime

solutions (r,s)∈Z2

}

Roughly speaking the Definition says that ξ can be approximated
in an “unlucky” way up to the order τ(ξ) so in particular any other
“better” approximation of ξ is indeed “lucky”.
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One easily shows that if ξ ∈ Q then τ(ξ) = 1.

Theorem (Dirichlet, 1840)

If ξ ∈ R \Q, then τ(ξ) ≥ 2.

The proof is a nice application of the pigeonhole principle.
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As a consequence of Liouville approximation theorem we get the
following:

Theorem (Liouville, 1844)

Let ξ ∈ R \Q an algebraic number of degree d, then τ(ξ) ≤ d

There is a long story about trying to get smaller bounds:

r Thue: τ(ξ) ≤ 1 + d
2

r Siegel: τ(ξ) ≤ 2
√
d

r Gelfond-Dyson: τ(ξ) ≤ √
2d
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The optimal solution was given by Roth (awarded with the Fields
medal):

Theorem (Roth, 1955)

Let ξ ∈ R \Q be an algebraic number, then τ(ξ) = 2

An equivalent formulation of the theorem is the following:

Theorem (Roth)

Let ξ ∈ R be an algebraic number, and let ε > 0 be a real number.
Then there exists a real constant C(ξ, ε) > 0 such that for every
pair of coprime integers (r, s) with s > C(ξ, ε), it holds that:∣∣∣ξ − r

s

∣∣∣ > |s|−(2+ε) (1.1)
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Regarding the spectrum of the approximation exponent we have:

Type of ξ Appr. exp.

Rational τ(ξ) = 1

Algebraic τ(ξ) = 2

Transcendental τ(ξ) ≥ 2

Liouville τ(ξ) = +∞

For any λ ∈ [2,+∞[, there exists ξ ∈ R such that τ(ξ) = λ.

For almost all ξ ∈ R in the sense of Lebesgue we have that
τ(ξ) = 2.
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Interesting problems

Quantitative Roth’s. Number of solutions of the opposite of
inequality (1.1).

Partial results by Bombieri-Van der Poorten
(1989), Corvaja and Evertse (1997).

Effective Roth’s. Bounds on C(ξ, ε). Still open. It would imply
an effective version of Siegel theorem on integral points.

What about the approximation exponent of special
transcendental numbers?
τ(e) = 2,
τ(π) ≤ 7.10320... achieved in 2020,
τ(log 2) ≤ 3.57455... achieved in 2010,
τ(log 3) ≤ 5.11620... achieved in 2018
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Corvaja (1997)

k is any field of characteristic 0. Vk is a set in bijection with a set
of absolute values of k, the map is denoted by v 7→ | · |v.

Notion of (logarithmic) height for (k,Vk):

h(α) :=
∑
v∈Vk

log+ |α|v

Assumption: The product formula holds for (k,Vk):∑
v∈Vk

log |α|v = 0
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Let (k,Vk) as above, α1, . . . , αn are algebraic over k,
| · |v1 , . . . , | · |vn are adequate renormalised extensions on k(αi) of
some absolute values on k. Then for any ε > 0 there exist a
constant C (depending on the fixed data), such that for all β ∈ k
with h(β) > C it holds that:

n∑
i=1

log |β − αi|vi > −(2 + ε)h(β)

r The field k is very general.

r Simultaneous approximation of n elements algebraic over k.
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Adelic curves

Vojta in 2021 generalised Roth’s theorem for arithmetic function
fields

i.e. a finitely generated estension of Q by using Arakelov
geometry.

We go further and do it for adelic curves (Chen-Moriwaki, 2020):

Definition (adelic curves)

Let K be a field of characteristic 0, let MK be the set of all
absolute values of K and let Ω = (Ω,A, µ) be a measure space
endowed with a map

ϕ : Ω → MK

ω 7→ | · |ω := ϕ(ω) .

such that for any a ∈ K×, the function ω 7→ log |a|ω lies in
L1(Ω, µ). The triple X = (K,Ω, ϕ) is called an adelic curve.
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Adelic curves

Definition

An adelic curve X = (K,Ω, ϕ) is said to be proper if for any
a ∈ K×: ∫

Ω
log |a|ω dµ(ω) = 0 .

Definition

X = (K,Ω, ϕ) is a proper adelic curve; K is an algebraic closure of
K. We have a proper adelic curve X = (K,Ω, ϕ), the (naive)

height of an element a ∈ K×
is:

hX(a) :=

∫
Ω
log+ |a|ν dχ(ν) .

where ν denotes a generic element of Ω and χ is the measure on Ω.
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D.-Zucconi

Question: Does a version of the Roth theorem hold for proper
adelic curves?

In general there is no hope; the functions ω 7→ log |a|ω for a ∈ K×

can be too wild. We need more assumptions on such functions:

r µ-equicontinuity
r uniform integrability
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D.-Zucconi

We give two possible generalisations of Roth’s theorem.

Assuming
µ-equicontinuity:

Theorem

Let X = (K,Ω, ϕ) be a proper adelic curve satisfying the
µ-equicontinuity condition. Let S = S1 ⊔ S2 ⊔ . . . ⊔ Sn be the
disjoint union of measurable subsets of Ω with finite measure . Fix
some distinct elements α1, . . . , αn ∈ K, then for any ε > 0 there
exists a real constant C > 0 (depending on the fixed data) such
that for any β ∈ K with hX(β) > C it holds that:

n∑
i=1

∫
Si

log− |β − αi|ωdµ(ω) > −(2 + ε)hX(β) . (2.1)

Playing a bit with the theory of extensions of absolute values one
can show that this theorem implies Corvaja’s result.
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µ-equicontinuity condition. Let S = S1 ⊔ S2 ⊔ . . . ⊔ Sn be the
disjoint union of measurable subsets of Ω with finite measure . Fix
some distinct elements α1, . . . , αn ∈ K, then for any ε > 0 there
exists a real constant C > 0 (depending on the fixed data) such
that for any β ∈ K with hX(β) > C it holds that:

n∑
i=1

∫
Si

log− |β − αi|ωdµ(ω) > −(2 + ε)hX(β) . (2.1)

Playing a bit with the theory of extensions of absolute values one
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Assuming µ-equicontinuity (outside from a set of small measure)
and uniform integrability:

Theorem

Let X = (K,Ω, ϕ) be a proper adelic curve satisfying the
µ-equicontinuity condition and the uniform integrability condition.
Fix some distinct elements α1, . . . , αn ∈ K. Let S be a measurable
subset of Ω of finite measure. Then for any ε > 0 and any c ∈ R
there exists a real constant C > 0 (depending on the fixed data)
such that for any β ∈ K with hX(β) > C it holds that:∫

S
min
1≤i≤n

(
log− |β − αi|ω

)
dµ(ω) > −(2 + ε)hX(β) + c (2.2)
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Some remarks

r The highly non-trivial work of Vojta consists in showing that
arithmetic function fields satisfies the two technical
hypotheses.

r In Corvaja’s setting the validity of the technical hypotheses is
trivial, since we have the counting measure.

r Q is an adelic curve but it is not hard to show that Roth’s
theorem fails.
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Some Remarks

Overview of our proof:

The existence of an “interpolating polynomial” δ for α1, . . . , αn

allows to write some integral bounds for measurable functions on
θ : Ω → R≥0 satisfying some technical properties with respect to
heights of the αi’s and β. Assuming that Roth’s theorem is false
leads to the construction of a measurable function that contradicts
such integral bounds. The main point consists in the construction
of such function; and this is exactly where we need the additional
technical conditions on the adelic curve.
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Open questions

r A quantitative version of Roth’s theorem for adelic curves. We
hope for an upper bound on the number of “lucky
approximants” with big enough heights.

r (Hard). A version of the Schmidt subspace theorem for adelic
curves. Here the obstruction is the absence of Minkowski’s
theory.
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