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Erdös–Turán conjecture (1936)
In 1936 Erdös and Turán realized that it ought to be possible to find
arithmetic progressions of length k in any sufficiently dense set of integers.

I A set E ⊆ N is said to have positive upper Banach density if

d(E) = lim sup
N→∞

#(E ∩ [1,N])

N
> 0.

Conjecture (Erdös–Turán conjecture (1936))
Suppose that E ⊆ N has a positive upper Banach density. Then for any
integer k ≥ 2, there exist infinitely many arithmetic progressions:

{x, x + n, x + 2n, . . . , x + kn} ⊂ E.

Examples:
I d(qN+ r) = 1/q, for some q ∈ N and r ∈ {0, . . . , q− 1}.
I d(P) = 0 , if P is the set of primes, since #(P ∩ [1,N]) ∼ N

log N .
I d(E) = 6

π2 > 0 , if E is the set of all square-free integers, that is
integers which are divisible by no perfect square other than 1.
I 10 = 2 · 5 is square-free,
I 12 = 3 · 4 is not square-free, since 4 = 22.



Szemerédi theorem

Theorem (Szemerédi theorem (1974))
Suppose that E ⊆ N has a positive upper Banach density. Then for any
integer k ≥ 2, there exist infinitely many arithmetic progressions:

{x, x + n, x + 2n, . . . , x + kn} ⊂ E.

I In 1953 Roth proved Erdös–Turán conjecture for k = 3 using classical
Fourier methods.

I In 1974 Szemerédi proved Erdös–Turán conjecture for arbitrary integer
k ∈ N using intricate arguments from combinatorics and graph theory.

I In 1977 Furstenberg used ergodic methods to give a conceptually new
proof of Szemerédi’s theorem using the multiple recurrence theorem.

I In 2001 Gowers gave a new quantitative proof of Szemerédi’s theorem.
Gowers developed the so-called higher order Fourier analysis.



Quantitative formulation of Szemerédi’s theorem
Definition
Let rk(N) denote the size of the largest subset of {1, . . . ,N} containing no
configuration of the form {x, x + n, x + 2n, . . . , x + (k − 1)n} with n 6= 0.

Theorem (Roth (1953), classical Fourier methods)
One has that

r3(N) .
N

log logN
.

Theorem (Szemerédi (1974) and Furstenberg (1977))
Szemerédi’s theorem as well as Furstenberg’s theorem give only

rk(N) = o(N), k ∈ N.

Theorem (Gowers (2001), higher order Fourier analysis)
For every k ∈ N there is γk > 0 such that

rk(N) .
N

(log logN)γk
.



Finitary version of Roth theorem
Theorem (Roth’s theorem (1953))
For every δ ∈ (0, 1] there is N ∈ N such that every A ⊆ ZN satisfying
#A ≥ δN contains (AP3) an arithmetic progression of length three.

Proof:
Let f̂ (ξ) = N−1∑

m∈ZN
e−2πimξf (m) denote the finite Fourier transform of a

function f : ZN → C on ZN . Setting α = 1̂A(0) ≥ δ, one has

N−2#{(a, d) ∈ Z2
N : a, a + d, a + 2d ∈ A}

= N−2
∑

x+y=2z

1A(x)1A(y)1A(z)

= α3 +
∑

ξ∈ZN\{0}

1̂A(ξ)
2
1̂A(−2ξ).

I The left-hand side is the probability that x, y, z all belong to A if you
choose them randomly to satisfy the equation x + y = 2z.

I Without the constraint that x + y = 2z this probability would be α3,
since each of x, y and z would have a probability α of belonging to A.

I So the term α3 on the right-hand side can be thought of as “what one
would expect”, whereas the remainder is a measure of the effect of the
dependence of x, y and z on each other.



The current state of the art

Author / Authors r3(N) .

Roth (1953) N
log log N

Heath–Brown (1987) and Szemerédi (1990) N
(log N)c for some c > 0

Bourgain (1999) N
(log N)1/2−o(1)

Bourgain (2008) N
(log N)2/3−o(1)

Sanders (2010) N
(log N)3/4−o(1)

Sanders (2010) (log log N)6N
log N

Bloom (2014) (log log N)4N
log N

Schoen (2020) (log log N)3+o(1)N
log N

Bloom and Sisask (2020) N
(log N)1+c for some c > 0

Kelley and Meka (2023) Ne−c(log N)1/11
for some c > 0

By Behrend (1946) we know that r3(N) & Ne−c(log N)1/2
for some c > 0.



Measure-preserving systems
A measure-preserving system (X,B(X), µ,T) is a σ-finite measure space
(X,B(X), µ) endowed with a measurable mapping T : X → X, which
preserves the measure µ, i.e. µ(T−1[E]) = µ(E) for all E ∈ B(X).

1. The integer shift system (Z,P(Z), | · |, S) with S : Z→ Z given by

S(x) := x + 1.

2. The circle rotation system (T,L(T), dx,Rα) with the rotation map
Rα : T→ T by Rα(x) := x + α (mod 1) for α ∈ R \Q.

3. The circle-doubling system (T,L(T), dx,D2) with the doubling map
D2 : T→ T given by D2(x) := 2x (mod 1).

4. The continued fraction system ([0, 1),L([0, 1)), µ,T) with the Gauss
measure

µ(A) :=
1

log 2

∫
A

dx
1 + x

,

and continued fraction map T : [0, 1)→ [0, 1) given by T(0) := 0 and

T(x) :=
1
x

(mod 1), when x 6= 0.



Furstenberg’s ideas and recurrence theorems
Theorem (Poincaré recurrence theorem (1890))
Given (X,B(X), µ,T) if µ(X) <∞ and E ∈ B(X) with µ(E) > 0 then

µ(E ∩ T−n[E]) > 0 for infinitely many n ∈ N.

I If a cloud of gas initially confined in the left compartment of a vessel is
released into the right empty compartment, then after a sufficiently long
time, the gas particles will return to the left compartment.

I Furstenberg’s multiple recurrence theorem asserts that for every k ∈ N

µ(E ∩ T−n[E] ∩ T−2n[E] ∩ . . . ∩ T−kn[E]) > 0 for some n ∈ N.
I Suppose that E ⊆ N has a positive upper Banach density. Then for any

integer k ≥ 2, we are looking for the configurations

{x, x + n, x + 2n, . . . , x + kn} = {x, Sn(x), S2n(x), . . . , Skn(x)} ⊂ E.

where S : Z→ Z is defined by S(x) = x + 1 for all x ∈ Z.

I It is easy to see that it suffices to show that

E ∩ S−n[E] ∩ S−2n[E] ∩ . . . ∩ S−kn[E] 6= ∅.



Furtsenberg’s proof of Szemerédi’s theorem

Theorem (Furtsenberg theorem (1977))
Let (X,B, µ,T) be a probability measure-preserving system µ(X) = 1 and
E ∈ B(X) with µ(E) > 0 then for every k ∈ N we have

lim inf
N→∞

1
N

N∑
n=1

µ(E ∩ T−n[E] ∩ T−2n[E] ∩ . . . ∩ T−kn[E]) > 0.

In particular, for every k ∈ N there exists n ∈ N such that

µ(E ∩ T−n[E] ∩ T−2n[E] ∩ . . . ∩ T−kn[E]) > 0.

Theorem (Furtsenberg correspondence principle)
Given A ⊆ N with d(A) > 0 there exists a probability measure-preserving
system (X,B, µ,T) and a set E ∈ B(X) such that µ(E) = d(A) and

0 < µ(E ∩ T−n[E] ∩ T−2n[E] ∩ . . . ∩ T−kn[E])

≤ d(A ∩ S−n[A] ∩ S−2n[A] ∩ . . . ∩ S−kn[A]), k ∈ N,

where S : Z→ Z is the shift operator defined by S(x) = x + 1 for all x ∈ Z.



Bergelson–Leibman theorem
Furstenberg’s proof of Szemerédi’s theorem was a major breakthrough in
modern ergodic theory, which had also transformed the area of additive
number theory and combinatorics as well as ergodic theory itself:
I partly because of the difficulty of Szemerédi’s original proof;
I and partly because Furstenberg’s proof has many natural extensions,

which do not seem to follow from Szemerédi’s approach. These include
a polynomial Szemerédi theorem of Bergelson and Leibman:

Theorem (Bergelson and Leibman theorem (1996))
Given polynomials P1, . . . ,Pk ∈ Z[n] each with zero constant term suppose
that µ(X) = 1 and E ∈ B(X) with µ(E) > 0, then one has

lim inf
N→∞

1
N

N∑
n=1

µ(E ∩ T−P1(n)[E] ∩ T−P2(n)[E] ∩ . . . ∩ T−Pk(n)[E]) > 0.

In particular, the subsets of integers with nonvanishing Banach density
contain polynomial patterns of the form

x, x + P1(n), x + P2(n), . . . , x + Pk(n).



Green–Tao theorem
Furstenberg’s ergodic-theoretic proof of Szemerédi theorem was also the
departure point for the modern additive combinatorics, where quantitative
bounds for Szemerédi-type theorems play a central role.
I This line of investigations had been initiated by Gowers who introduced

new ideas of the so-called higher order Fourier analysis.
I The latter concepts, in contrast to the ergodic qualitative approach,

turned out to be very effective in obtaining quantitative bounds for long
arithmetic progressions and resulted in many deep theorems:

Theorem (Green and Tao theorem (2004))
Suppose that E ⊆ P has a positive upper Banach density in the primes P, i.e.

lim sup
N→∞

#(E ∩ [1,N])

#(P ∩ [1,N])
> 0.

Then for any integer k ≥ 2, there exist infinitely many arithmetic
progressions:

{x, x + n, x + 2n, . . . , x + kn} ⊂ E.



The longest known arithmetic progression in the primes
I The longest and largest known AP-k is an AP-27, it was found on

September 23, 2019 by Rob Gahan with an AMD R9 290 GPU.

an = 224584605939537911 + 81292139 · 223092870 · n

where n = 0, 1, . . . , 26.
I The first known AP-26 was found on April 12, 2010 by Benoãt

Perichon on a PlayStation 3 with software by Jarosław Wróblewski and
Geoff Reynolds:

an = 43142746595714191 + 23681770 · 223092870 · n

where n = 0, 1, . . . , 25.
I However, on January 18, 2007 Jarosław Wróblewski:

an = 468395662504823 + 205619 · 223092870 · n

where n = 0, 1, . . . , 23 found the first AP-24. For this Wróblewski used
a total of 75 computers: 15: 64-bit Athlons; 15: dual core 64-bit
Pentium D 805; 30: 32-bit Athlons 2500; and 15: Durons 900.



(AP3) in the Piatetski–Shapiro primes
I In 1953 Piatetski–Shapiro considered the following subset of the primes

Pγ = P ∩ {bn1/γc : n ∈ N},

and established the following asymptotic formula

#(Pγ ∩ [1,N]) ∼ Nγ

logN
, as N →∞

for γ ∈
( 11

12 , 1
)
, where

( 11
12 ≈ 0, 916...

)
.

Theorem (Roth’s theorem for Pγ , (M.M. 2015))
Assume that γ ∈ (71/72, 1), (71/72 ≈ 0, 9861...). Then every A ⊆ Pγ with
positive relative upper density, i.e.

lim sup
n→∞

|A ∩ [1, n]|
|Pγ ∩ [1, n]| > 0,

contains a non–trivial three–term arithmetic progression.
I Green–Tao theorem does not settle whether Pγ contains non–trivial

arithmetic progressions of length at least three, since

lim sup
N→∞

#(Pγ ∩ [1,N])

#(P ∩ [1,N])
= lim sup

N→∞

Nγ

logN
· logN

N
= lim sup

N→∞
Nγ−1 = 0.



Ergodic averages as a tool to detect recurrent points
For a measurable function f ∈ L0(X) define the ergodic average by

AN f (x) :=
1
N

N−1∑
n=0

f (Tnx), for x ∈ X.

I If we set f (x) = 1E(x), then

AN1E(x) =
1
N
#{0 ≤ n < N : Tnx ∈ E}.

I Norm or pointwise convergence of AN f can be used to reprove the
Poincaré recurrence theorem: if µ(X) = 1, and µ(E) > 0, then

µ(E ∩ T−n[E]) > 0 for some n ∈ N.

I In the early 1930’s von Neumann and Birkhoff proved that for every
1 ≤ p <∞ and every f ∈ Lp(X) there exists f ∗ ∈ Lp(X) such that

lim
N→∞

AN f (x) = f ∗(x)

for almost every x ∈ X and in Lp(X) norm.



Birkhoff’s ergodic theorem
To establish that for every 1 ≤ p <∞ and every f ∈ Lp(X) there exists
f ∗ ∈ Lp(X) such that

lim
N→∞

AN f (x) = lim
N→∞

1
N

N∑
n=1

f (Tnx) = f ∗(x) (1)

one can proceed in two steps:

I Step 1. Quantitative version of ergodic theorem

‖ sup
N∈N
|AN f |‖Lp(X) . ‖ f‖Lp(X) for p ∈ (1,∞]. (2)

The bounds in (2) follow from the Hardy–Littlewood maximal
inequality

∥∥∥ sup
N∈N

∣∣∣ 1
N

N∑
n=1

f (x− n)
∣∣∣∥∥∥
`p(Z)

. ‖ f‖`p(X), for p ∈ (1,∞],

which is AN f with the shift operator T(x) = x− 1 in (1).

I Step 2. Pointwise convergence on a dense class of functions in Lp(X).



Convergence on a dense class

AN f (x) =
1
N

N∑
n=1

f (Tnx)

I IT =
{

f ∈ L2(X) : f ◦ T = f
}

. If f ∈ IT , then

AN f = f ,

µ-almost everywhere.

I JT =
{

g ◦ T − g : g ∈ L2(X) ∩ L∞(X)
}

. If f ∈ JT , then by telescoping

|AN f (x)| = 1
N

∣∣∣ N∑
n=1

g(Tn+1x)−g(Tnx)
∣∣∣ = 1

N
|g(TN+1x)− g(Tx)| −−−→N→∞ 0.

I IT ⊕ JT is dense in L2(X).



Bourgain’s pointwise ergodic theorem
In the early 1980’s Bellow and Furstenberg asked independently about the
poinwise convergence for polynomial ergodic averages

AP
N f (x) :=

1
N

N∑
n=1

f (TP(n)x) for x ∈ X,

where P ∈ Z[n] is a polynomial of degree > 1.
I Furstenberg was motivated by the result of Sárközy: S ⊆ Z has positive

upper Banach density, then there are x, n ∈ N such that x, x + n2 ∈ S.
I Furstenberg proved norm convergence for AP

N f and deduced the
polynomial Poincaré recurrence theorem: if µ(X) <∞ and E ∈ B(X)
with µ(E) > 0, then µ(E ∩ T−P(n)[E]) > 0 for some n ∈ N.

Bellow and Furstenberg question was very hard. Even for P(n) = n2, since
(n + 1)2 − n2 = 2n + 1. For overcoming this problem, Bourgain used the
ideas from the circle method of Hardy and Littlewood to show:
I Lp(X) boundedness of the maximal function for any 1 < p ≤ ∞.
I Given an increasing sequence (Nj : j ∈ N), for each J ∈ N one has( J∑

j=0

∥∥ sup
Nj≤N<Nj+1

∣∣AP
N f − AP

Nj
f
∣∣∥∥2

L2(X)

)1/2
≤ o(J1/2)‖ f‖L2(X).



The current state of the art

Let (X,B(X), µ,T) be a probability measure-preserving system µ(X) = 1.
Let P1, . . . ,Pk ∈ Z[n], and f1, . . . , fk ∈ L∞(X). Recall that

AP1,...,Pk
N (f1, . . . , fk)(x) =

1
N

N∑
n=1

f1(TP1(n)x) . . . fk(TPk(n)x). (3)

Norm convergence of (3) on L2(X):

I Furstenberg (1977): k = 2 with P1(n) = an, P2(n) = bn, a, b ∈ Z.
I Furstenberg–Weiss (1996): k = 2 with P1(n) = n and P2(n) = n2.
I Host and Kra (2002) and independently Ziegler (2004): any k ∈ N and

arbitrary linear polynomials Pi(n) = ain with a1, . . . , ak ∈ Z.
I Leibman (2005): for any k ∈ N and arbitrary P1, . . . ,Pk ∈ Z[n].

Pointwise convergence of (3) on Lp(X):

I Bourgain (1990): for k = 2 with P1(n) = an, P2(n) = bn, a, b ∈ Z.



Furstenberg–Bergelson–Leibman conjecture
One of the central open problems in pointwise ergodic theory (from the mid
1980’s) is a conjecture of Furstenberg–Bergelson–Leibman:

Theorem (Furstenberg–Bergelson–Leibman conjecture)
Let G be a nilpotent group of measure preserving transformations of a
probability space (X,B(X), µ). Let Pj,i ∈ Z[n] be polynomials and
T1, . . . ,Td ∈ G and f1, . . . , fm ∈ L∞(X). Does the limit of the averages

1
N

N∑
n=1

f1(T
P1,1(n)
1 · · · TP1,d(n)

d x) · . . . · fm(T
Pm,1(n)
1 · · · TPm,d(n)

d x) (4)

exist µ-almost everywhere on X as N →∞?

I The norm convergence in L2(X) for the averages (4) was established in
the nilpotent setting by M. Walsh in 2012 .

I Bergelson and Leibman showed that L2(X) norm convergence for (4)
may fail if G is a solvable group.

I The nilpotent setting is probably the most general setting where the
conjecture of Furstenberg–Bergelson–Leibman might be true.



Recent contribution to the nilpotent setting
Linear and nilpotent variant of the Furstenberg–Bergelson–Leibman
problem can be summarize as follows:

Theorem (M., Ionescu, Magyar, and Szarek (2021))
Let (X,B(X), µ) be a σ-finite space and let T1, . . . ,Td : X → X be a family
of invertible and measure preserving transformations satisfying

[[Ti,Tj],Tk] = Id for all 1 ≤ i ≤ j ≤ k ≤ d.

Then for every polynomials P1, . . . ,Pd ∈ Z[n] and every f ∈ Lp(X) with
1 < p <∞ the averages

1
N

N∑
n=1

f (TP1(n)
1 · · · TPd(n)

d x)

converge for µ-almost every x ∈ X and in Lp(X) norm as N →∞.

I One can think that T1, . . . ,Td belong to a nilpotent group of step two of
measure preserving mappings of a σ-finite space (X,B(X), µ).



Recent contribution to the bilinear setting
Thirty years after Bourgain’s pointwise bilinear ergodic theorem for the
averages with linear orbits

Aan,bn
N ( f , g)(x) =

1
N

N∑
n=1

f (Tanx)g(Tbnx) a, b ∈ Z

jointly with Ben Kruse and Terry Tao we established the following theorem.

Theorem (M., Krause, and Tao, (2020))
Let (X,B(X), µ,T) be an invertibe σ-finite measure-preserving system, let
P ∈ Z[n] with deg(P) ≥ 2, and let f ∈ Lp1(X) and g ∈ Lp2(X) for some
p1, p2 ∈ (1,∞) with

1
p1

+
1
p2

=
1
p
≤ 1.

Then the Furstenberg–Weiss averages

An,P(n)
N ( f , g)(x) =

1
N

N∑
n=1

f (Tnx)g(TP(n)x)

converge for µ-almost every x ∈ X and in Lp(X) norm as N →∞.



Key ideas
The proof of pointwise convergence for

An,P(n)
N ( f , g)(x) =

1
N

N∑
n=1

f (Tnx)g(TP(n)x)

is quite intricate, and relies on several deep results in the literature:
I the Ionescu–Wainger multiplier theorem (discrete Littlewood–Paley

theory and paraproduct theory) — (HA)&(NT);
I The circle method of Hardy and Littlewood — (NT);
I the inverse theory of Peluse and Prendeville — (CO)&(NT);
I Hahn–Banach separation theorem — (FA);
I Lp-improving estimates of Han–Kovač–Lacey–Madrid–Yang (derived

from the Vinogradov mean value theorem) — (HA)&(NT);
I Rademacher–Menshov argument combined with Khinchine’s inequality

— (HA)&(FA)&(PR);
I Lp(R) bounds for a shifted square function — (HA);
I bounded metric entropy argument from Banach space theory—

(CO)&(FA)&(PR);
I van der Corput type estimates in the p-adic fields — (HA)&(NT).



Inverse theorem of Peluse and Prendiville
An important ingredient in the proof is the inverse theorem of Peluse, which
can be thought of as a counterpart of Weyl’s inequality:

Theorem (Peluse, (2019/2020))
Let m ≥ 2 and P1, . . . ,Pm ∈ Z[n] each having zero constant term such that
degP1 < . . . < degPm. Let N ∈ N and δ ∈ (0, 1) and assume that functions
f0, f1, . . . , fm : Z→ C are supported on [−N0,N0] for some N0 ' NdegPm ,
and ‖ f0‖L∞(Z), ‖ f1‖L∞(Z), . . . , ‖ fm‖L∞(Z) ≤ 1, and suppose that

∥∥∥ 1
N

N∑
n=1

f0(x)f1(x− P1(n)) · · · fm(x− Pm(n))
∥∥∥

L1
x(Z)
≥ δNdegPm .

Then there are 1 ≤ q . δ−O(1) and δO(1)NdegP1 . M ≤ NdegP1 such that

∥∥∥ 1
M

M∑
y=1

f1(x + qy)
∥∥∥

L1
x(Z)

& δO(1)NdegPm

provided that N & δ−O(1).



Quantitative polynomial Szemerédi’s
Let rP1,...,Pm(N) denote the size of the largest subset of {1, . . . ,N} containing
no configuration of the form x, x + P1(n), . . . , x + Pm(n) with n 6= 0.
I Berglson and Leibman showed proving polynomial multiple recurrence

theorem that
rP1,...,Pm(N) = oP1,...,Pm(N),

whenever P1, . . . ,Pm ∈ Z[n] and each having zero constant term.

Theorem (Gowers (2001), higher order Fourier analysis)
If P1(n) = n, . . . ,Pm(n) = (m− 1)n for every m ∈ N then there is γm > 0
such that

rP1,...,Pm(N) .
N

(log logN)γm
.

I No bounds were known in general for the polynomial Szemerédi’s
theorem until a series of recent papers of Peluse and Prendiville.

I Peluse showed that there is a constant γP1,...,Pm > 0 such that

rP1,...,Pm(N) .P1,...,Pm

N
(log logN)γP1,...,Pm

answering a question posed by Gowers.



Commutative Furstenberg–Bergelson–Leibman conjecture

Ongoing project (Krause, M., Peluse, and Wright (2021))
Let (X,B(X), µ) be a probability space equipped with commuting invertible
measure-preserving maps T1, . . . ,Tk : X → X. Consider P1, . . . ,Pk ∈ Z[n]
with distinct degrees and f1, . . . , fk ∈ L∞(X). It is expected that the averages

AP1,...,Pk
N (f1, . . . , fk)(x) =

1
N

N∑
n=1

f1(T
P1(n)
1 x) . . . fk(T

Pk(n)
k x)

converge for µ-almost every x ∈ X.

I There is some hope in the case when T1 = . . . = Tk = T .
I We also have some promising thoughts for the following averages

1
N

N∑
n=1

f (Tn
1 x)g(Tn2

2 x)

that correspond to the configurations: (x, y), (x + n, y), (x, y + n2) ∈ Z2.



Dziękuję!


	Szemerédi's theorem

