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Erd6s—Turan conjecture (1936)
In 1936 Erdos and Turdn realized that it ought to be possible to find
arithmetic progressions of length k in any sufficiently dense set of integers.

> A set E C Nis said to have positive upper Banach density if

d(E) = lim sup #ENLN)

msu N > 0.
Conjecture (Erdos—Turan conjecture (1936))

Suppose that E C N has a positive upper Banach density. Then for any
integer k > 2, there exist infinitely many arithmetic progressions:

{x,x+n,x+2n,...,x+kn} CE.

Examples:
» d(gN+r)=1/q, forsomeq € Nandr € {0,...,q — 1}.

> d(P) =0, if Pis the set of primes, since #(P N [1,N]) ~ 5.

> d(E) = % > 0, if Eis the set of all square-free integers, that is
integers which are divisible by no perfect square other than 1.
> 10 = 2 - 5 is square-free,
> 12 = 3. 4 is not square-free, since 4 = 2.



Szemerédi theorem

Theorem (Szemerédi theorem (1974))

Suppose that E C N has a positive upper Banach density. Then for any
integer k > 2, there exist infinitely many arithmetic progressions:

{x,x+n,x+2n,...,x+kn} CE.

» In 1953 Roth proved Erdos—Turdn conjecture for kK = 3 using classical
Fourier methods.

» In 1974 Szemerédi proved Erdos—Turdn conjecture for arbitrary integer
k € N using intricate arguments from combinatorics and graph theory.

» In 1977 Furstenberg used ergodic methods to give a conceptually new
proof of Szemerédi’s theorem using the multiple recurrence theorem.

> In 2001 Gowers gave a new quantitative proof of Szemerédi’s theorem.
Gowers developed the so-called higher order Fourier analysis.



Quantitative formulation of Szemerédi’s theorem

Definition

Let r;(N) denote the size of the largest subset of {1,..., N} containing no
configuration of the form {x,x +n,x + 2n,...,x+ (k — 1)n} withn # 0.
Theorem (Roth (1953), classical Fourier methods)

One has that
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Theorem (Szemerédi (1974) and Furstenberg (1977))

Szemerédi’s theorem as well as Furstenberg’s theorem give only

n(N) = o(N),  keN.

Theorem (Gowers (2001), higher order Fourier analysis)
For every k € N there is v, > 0 such that

N

<
nN) 3 (loglog N)w’



Finitary version of Roth theorem

Theorem (Roth’s theorem (1953))

For every ¢ € (0,1] there is N € N such that every A C Zy satisfying
#A > 6N contains (AP3) an arithmetic progression of length three.

Proof:
Let f(§) = N~'Y, ez, € 2™™f(m) denote the finite Fourier transform of a

function f : Zy — C on Zy. Setting a = ﬁ(o) > §, one has
N72#{(a,d) € Z% : a,a+d,a+2d € A}
=NT 3 L@L0)G)

x+y=2z
=o'+ > La(&)’La(-28).
gezy\{0}
» The left-hand side is the probability that x, y, z all belong to A if you
choose them randomly to satisfy the equation x + y = 2z.
» Without the constraint that x + y = 2z this probability would be o,
since each of x, y and z would have a probability « of belonging to A.
» So the term o on the right-hand side can be thought of as “what one
would expect”, whereas the remainder is a measure of the effect of the
dependence of x, y and z on each other. OJ



The current state of the art

H Author / Authors H‘ r3(N) S
Roth (1953) Toalog W
Heath-Brown (1987) and Szemerédi (1990) ﬁ for some ¢ > 0
Bourgain (1999) T o
Bourgain (2008) Qo
Sanders (2010) Qo
Sanders (2010) %
Bloom (2014) %
Schoen (2020) w
Bloom and Sisask (2020) ToaNTFe for some ¢ > 0
Kelley and Meka (2023) Ne0°5 M for some ¢ > 0

By Behrend (1946) we know that r3(N) = Ne—<10gM)"* for some ¢ > 0.



Measure-preserving systems
A measure-preserving system (X, B(X), u, T) is a o-finite measure space
(X, B(X), u) endowed with a measurable mapping 7: X — X, which
preserves the measure p, i.e. u(T~'[E]) = p(E) for all E € B(X).

1. The integer shift system (Z,P(Z),| - |,S) with S : Z — 7Z given by
S(x) :=x+ L.

2. The circle rotation system (T, L(T), dx, R, ) with the rotation map
Ry:T—-TbyR,(x) :==x+ a (mod 1) forae € R\ Q.

3. The circle-doubling system (T, L(T), dx, D;) with the doubling map
D, : T — T given by D,(x) := 2x (mod 1).

4. The continued fraction system ([0, 1), L£([0, 1)), u, T) with the Gauss

measure
1 dx

A) = —
HA) =05 | T
and continued fraction map 7 : [0, 1) — [0, 1) given by 7(0) := 0 and

T(x):= % (mod 1), when x # 0.



Furstenberg’s ideas and recurrence theorems
Theorem (Poincaré recurrence theorem (1890))
Given (X,B(X), i, T) if u(X) < oo and E € B(X) with u(E) > 0 then

w(ENT™"E]) >0 forinfinitely many n € N.

> If a cloud of gas initially confined in the left compartment of a vessel is
released into the right empty compartment, then after a sufficiently long
time, the gas particles will return to the left compartment.

» Furstenberg’s multiple recurrence theorem asserts that for every k € N
WENTE)NT >EN...N T ™[E]) >0 forsome necN.

» Suppose that E C N has a positive upper Banach density. Then for any
integer k > 2, we are looking for the configurations

{x,x +n,x+2n,...,x+kn} = {x,5"(x),5"(x),...,5"(x)} C E.
where S : Z — Z is defined by S(x) = x + 1 forall x € Z.
> It is easy to see that it suffices to show that

ENS™EINS™[EIN...NS™"[E] £ 0.



Furtsenberg’s proof of Szemerédi’s theorem

Theorem (Furtsenberg theorem (1977))
Let (X, B, i1, T) be a probability measure-preserving system u(X) = 1 and
E € B(X) with u(E) > 0 then for every k € N we have

N
. . 1 —n —2n —kn
l}vrgloréfﬁ E WENT "EINT [ElNn...n T ™[E]) > 0.

n=1
In particular, for every k € N there exists n € N such that
WENT "E|NT >[E]N...Nn T "E]) > 0.
Theorem (Furtsenberg correspondence principle)

Given A C N with d(A) > 0 there exists a probability measure-preserving
system (X, B, 11, T) and a set E € B(X) such that u(E) = d(A) and

0<uENT"[E|NT *E]N...Nn T *[E])
<dANST"A]NSMA]N...NSMA]),  keN,

where S : Z — Z is the shift operator defined by S(x) = x + 1 for all x € Z.



Bergelson—-Leibman theorem
Furstenberg’s proof of Szemerédi’s theorem was a major breakthrough in
modern ergodic theory, which had also transformed the area of additive
number theory and combinatorics as well as ergodic theory itself:
» partly because of the difficulty of Szemerédi’s original proof;
» and partly because Furstenberg’s proof has many natural extensions,
which do not seem to follow from Szemerédi’s approach. These include
a polynomial Szemerédi theorem of Bergelson and Leibman:

Theorem (Bergelson and Leibman theorem (1996))

Given polynomials Py, . .., Py € Z[n] each with zero constant term suppose
that p(X) = 1 and E € B(X) with u(E) > 0, then one has

N
. —Pi(n) —P>(n) —Pi(n)
l}ﬂgfﬁg wENT [E]NnT [E]N...NT [E]) > 0.

n=1

In particular, the subsets of integers with nonvanishing Banach density
contain polynomial patterns of the form

x, x+ Pi(n), x+ Py(n), ..., x+ Pi(n).



Green—Tao theorem

Furstenberg’s ergodic-theoretic proof of Szemerédi theorem was also the
departure point for the modern additive combinatorics, where quantitative
bounds for Szemerédi-type theorems play a central role.
» This line of investigations had been initiated by Gowers who introduced
new ideas of the so-called higher order Fourier analysis.

» The latter concepts, in contrast to the ergodic qualitative approach,
turned out to be very effective in obtaining quantitative bounds for long
arithmetic progressions and resulted in many deep theorems:

Theorem (Green and Tao theorem (2004))
Suppose that E C P has a positive upper Banach density in the primes P, i.e.

s FEO V)

WS AL

Then for any integer k > 2, there exist infinitely many arithmetic
progressions:
{x,x+n,x+2n,...,x+kn} CE.



The longest known arithmetic progression in the primes

» The longest and largest known AP-k is an AP-27, it was found on
September 23, 2019 by Rob Gahan with an AMD R9 290 GPU.

a, = 224584605939537911 + 81292139 - 223092870 - n

wheren =0, 1,...,26.
» The first known AP-26 was found on April 12, 2010 by Benoat

Perichon on a PlayStation 3 with software by Jarostaw Wréblewski and
Geoff Reynolds:
a, = 43142746595714191 + 23681770 - 223092870 - n
wheren =0, 1,...,25.
» However, on January 18, 2007 Jarostaw Wréblewski:

a, = 468395662504823 + 205619 - 223092870 - n

where n = 0, 1,...,23 found the first AP-24. For this Wréblewski used
a total of 75 computers: 15: 64-bit Athlons; 15: dual core 64-bit
Pentium D 805; 30: 32-bit Athlons 2500; and 15: Durons 900.



(AP3) in the Piatetski—Shapiro primes

» In 1953 Piatetski—Shapiro considered the following subset of the primes
P, =Pn{|[n'/7] :neN},

and established the following asymptotic formula

#(Pvm[l,N])N@, as N — o0

for v € (%, 1), where (% ~ 0,916...).
Theorem (Roth’s theorem for P, (M.M. 2015))

Assume that v € (71/72,1), (71/72 ~ 0,9861...). Then every A C P, with
positive relative upper density, i.e.

contains a non—trivial three—term arithmetic progression.

» Green—Tao theorem does not settle whether P, contains non—trivial
arithmetic progressions of length at least three, since

, £(P,N[LN]) . N logN .. .
limsup 22— =2 = limsu . =limsupN"" =0.
Vsl #PALN]) — Nosl logN N ey




Ergodic averages as a tool to detect recurrent points
For a measurable function f € L°(X) define the ergodic average by

N—1

Anf(x) == % Z:O f(T"x), for xeX.
> If we set f(x) = 1g(x), then

1
Anlg(x) = N#{O <n<N:T'x€E}.

» Norm or pointwise convergence of Ayf can be used to reprove the
Poincaré recurrence theorem: if u(X) = 1, and p(E) > 0, then

wWENTE]) >0 forsome neN.

» In the early 1930’s von Neumann and Birkhoff proved that for every

1 < p < oo and every f € L”(X) there exists f* € L”(X) such that
Jim Anf(x) = f*(x)

for almost every x € X and in L?(X) norm.



Birkhoff’s ergodic theorem

To establish that for every 1 < p < oo and every f € LP(X) there exists
f* € LP(X) such that

N
Jim Avf(0) = lim S A() = () M

n=1
one can proceed in two steps:

> Step 1. Quantitative version of ergodic theorem
FsuplAnflllreo S Ll for p & (1, 00]. @
€

The bounds in (2) follow from the Hardy-Littlewood maximal
inequality

S ||f||f”(x)a for pE (1700],

N
1
sup ’— X—n ’
H NeN I N ;f( ) (Z)
which is Ayf with the shift operator 7'(x) = x — 1 in ().

> Step 2. Pointwise convergence on a dense class of functions in L (X).



Convergence on a dense class

() = 1 DA

> I ={fel*)X):foT =f}. Iff € Ir, then
Anf =1,
p-almost everywhere.
> Jr={goT—g:gcL*(X)NL>(X)}. If f € Jr, then by telescoping
1w 1
AN @] = | D 8T ) —g(T")| = < |e(TV*1x) = g(T)| 2 0.

n=1

» I; @ Jris dense in L*(X).



Bourgain’s pointwise ergodic theorem
In the early 1980’s Bellow and Furstenberg asked independently about the
poinwise convergence for polynomial ergodic averages

ANf(x Zf T"™Wx)  for x€X,

where P € Z[n] is a polynomial of degree > 1.
» Furstenberg was motivated by the result of Sarkézy: S C Z has positive
upper Banach density, then there are x,n € N such that x, x + n> € S.

» Furstenberg proved norm convergence for Ay and deduced the
polynomial Poincaré recurrence theorem: if ;(X) < oo and E € B(X)
with u(E) > 0, then ;(E N T~""M[E]) > 0 for some n € N.

Bellow and Furstenberg question was very hard. Even for P(n) = n?, since
(n+ 1) —n? = 2n + 1. For overcoming this problem, Bourgain used the
ideas from the circle method of Hardy and Littlewood to show:

» [7(X) boundedness of the maximal function for any 1 < p < oo.

» Given an increasing sequence (N; : j € N), for each J € N one has

(ZH 2 AT = A ) <ol o,



The current state of the art

Let (X, B(X), i1, T) be a probability measure-preserving system p(X) = 1.
Let Py,..., Py € Z[n],and fi, ..., fi € L>°(X). Recall that

AR () (6 Zﬁ (T ®x) . f(T"0x). ()

Norm convergence of (3) on L*(X):
» Furstenberg (1977): k = 2 with Py(n) = an, P,(n) = bn, a,b € Z.
» Furstenberg—Weiss (1996): k = 2 with P;(n) = n and P,(n) = n°.

> Host and Kra (2002) and independently Ziegler (2004): any k € N and
arbitrary linear polynomials P;(n) = a;n withay, ..., a; € Z.

» Leibman (2005): for any k € N and arbitrary Py, ..., Py € Z[n].

Pointwise convergence of (3) on L”(X):

» Bourgain (1990): for k = 2 with Py (n) = an, P(n) = bn, a,b € Z.



Furstenberg—Bergelson—-Leibman conjecture

One of the central open problems in pointwise ergodic theory (from the mid
1980’s) is a conjecture of Furstenberg—Bergelson—Leibman:
Theorem (Furstenberg—Bergelson—Leibman conjecture)

Let G be a nilpotent group of measure preserving transformations of a
probability space (X, B(X), j1). Let P;; € Z[n] be polynomials and
T,....,T; € Gandfy,...,fn € L®(X). Does the limit of the averages

N

1 n n n n

S A Oy (T ) @)
n=1

exist p-almost everywhere on X as N — 00?

» The norm convergence in L?(X) for the averages (4) was established in
the nilpotent setting by M. Walsh in 2012 .

» Bergelson and Leibman showed that L?(X) norm convergence for (4)
may fail if G is a solvable group.

» The nilpotent setting is probably the most general setting where the
conjecture of Furstenberg—Bergelson—-Leibman might be true.



Recent contribution to the nilpotent setting

Linear and nilpotent variant of the Furstenberg—Bergelson—-Leibman
problem can be summarize as follows:

Theorem (M., Ionescu, Magyar, and Szarek (2021))

Let (X, B(X), ) be a o-finite space and let Ty, ..., T, : X — X be a family
of invertible and measure preserving transformations satisfying

(T, T, ] =1d  forall 1<i<j<k<d.

Then for every polynomials P, ..., P, € Z[n] and every f € [P(X) with
1 < p < oo the averages

converge for p-almost every x € X and in L (X) norm as N — oc.

» One can think that 7, . .., T, belong to a nilpotent group of step two of
measure preserving mappings of a o-finite space (X, B(X), ).



Recent contribution to the bilinear setting

Thirty years after Bourgain’s pointwise bilinear ergodic theorem for the
averages with linear orbits

N
an,on 1
AVN(fL8) (%) = N D F(T0g(T"x)  abel
n=1
jointly with Ben Kruse and Terry Tao we established the following theorem.
Theorem (M., Krause, and Tao, (2020))

Let (X, B(X), u, T) be an invertibe o-finite measure-preserving system, let
P € Z[n] with deg(P) > 2, and let f € L' (X) and g € LP*(X) for some
p1,p2 € (1,00) with
1 1
N + N

1
pop2op
Then the Furstenberg—Weiss averages

<1

1 N

A (F,9)0) = 5 D F(TR)g(T7)

n=1

converge for p-almost every x € X and in L (X) norm as N — oc.



Key ideas

The proof of pointwise convergence for

N

AYO(f,0)(0) = 5 SO AR

n=1

is quite intricate, and relies on several deep results in the literature:

>

vvyyvyy

v

the Tonescu—Wainger multiplier theorem (discrete Littlewood—Paley
theory and paraproduct theory) — (HA)&(NT);

The circle method of Hardy and Littlewood — (NT);

the inverse theory of Peluse and Prendeville — (CO)&(NT);
Hahn—Banach separation theorem — (FA);

L7-improving estimates of Han—Kova¢-Lacey—Madrid—Yang (derived
from the Vinogradov mean value theorem) — (HA)&(NT);
Rademacher—Menshov argument combined with Khinchine’s inequality
— (HA)&(FA)&(PR);

LP(R) bounds for a shifted square function — (HA);

bounded metric entropy argument from Banach space theory—
(CO)&(FA)&(PR);

van der Corput type estimates in the p-adic fields — (HA)&(NT).



Inverse theorem of Peluse and Prendiville

An important ingredient in the proof is the inverse theorem of Peluse, which
can be thought of as a counterpart of Weyl’s inequality:

Theorem (Peluse, (2019/2020))

Letm > 2 and Py, ..., P, € Z|n|] each having zero constant term such that
degP; < ... < degP,. Let N € Nand § € (0,1) and assume that functions
fosfis -« sfm : Z — C are supported on [—Ny, No| for some Ny =~ N94&Fn,
and || follzo< zy, | filloe z)s - - - 5 (| fnll Lo z) < 1, and suppose that

> 5Ndeng'
Li(z) —

N
1
|5 Do = Pr(n)) -+ folor = Pul))
n=1
Then there are 1 < g < 50 gng §0(1) Ndegh < M < NP1 such that
| M
- > 60(])Ndeng
HM ;fl(x—qu)HLl(Z) ~

provided that N > §—°(1),



Quantitative polynomial Szemerédi’s
Let rp,, . p,(N) denote the size of the largest subset of {1, ..., N} containing
no configuration of the form x, x + Py(n), ..., x + P,(n) with n # 0.
» Berglson and Leibman showed proving polynomial multiple recurrence
theorem that

rpy,...pn(N) =op,, .. p,(N),
whenever Py, ..., P, € Z[n] and each having zero constant term.

Theorem (Gowers (2001), higher order Fourier analysis)

IfPi(n) =n,...,P,(n) = (m — )n for every m € N then there is ,, > 0
such that N
NS —uo—.
rPla~~-7Pm( )N (IOgIOgN)PY’"

» No bounds were known in general for the polynomial Szemerédi’s
theorem until a series of recent papers of Peluse and Prendiville.

> Peluse showed that there is a constant yp,,._p, > 0 such that

N
loglog N)Vi--Fm

rPlv-“va(N) §P1,4..,Pm (

answering a question posed by Gowers.



Commutative Furstenberg—Bergelson—Leibman conjecture
Ongoing project (Krause, M., Peluse, and Wright (2021))
Let (X, B(X), 1) be a probability space equipped with commuting invertible

measure-preserving maps 71, ..., T : X — X. Consider Py, ..., P; € Zn]
with distinct degrees and fi, . . ., fy € L°°(X). It is expected that the averages

AR (R Zf Ty x) AT )

converge for p-almost every x € X.

» There is some hope in the case when T} = ... =T, =T.

» We also have some promising thoughts for the following averages

1 N
5 S p(rg(ry x
n=1

that correspond to the configurations: (x,y), (x + n,y), (x,y + n?) € Z>.



Dzigkuje!
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