# On pointwise convergence problems, part II 

Mariusz Mirek<br>IAS Princeton \& Rutgers University<br>Uniwersytet Jagielloński<br>Kraków May 17, 2023

Supported by the NSF grant DMS-2154712, and the CAREER grant DMS-2236493.

## Khinchin's equidistribution theorem

## Theorem (Birkhoff ergodic theorem, (1931))

Let $(X, \mathcal{B}(X), \mu, T)$ be a $\sigma$-finite measure preserving system. For every $1 \leq p<\infty$ and every $f \in L^{p}(X)$ there exists $f^{*} \in L^{p}(X)$ such that

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) \underset{N \rightarrow \infty}{\longrightarrow} f^{*}(x)
$$

- In 1933 Khinchin had the great insight to see how to generalize the classical equidistribution result by using Birkhoff's ergodic theorem and proved that for any irrational $\theta \in \mathbb{R}$, for any Lebesgue measurable set $E \subseteq[0,1)$, and for almost every $x \in \mathbb{R}$, one has

$$
\lim _{N \rightarrow \infty} \frac{\#\{1 \leq n \leq N:\{x+\theta n\} \in E\}}{N}=|E|
$$

- A famous Bellow problem from the early 1980's asks whether the same conclusion holds in Khinchin's result if we replace $n$ with any polynomial $P(n)$ with integer coefficients.


## Bourgain's pointwise ergodic theorem

In the early 1980's Bellow and Furstenberg asked independently about the poinwise convergence for polynomial ergodic averages

$$
A_{N}^{P} f(x):=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{P(n)} x\right) \quad \text { for } \quad x \in X
$$

where $P \in \mathbb{Z}[\mathrm{n}]$ is a polynomial of degree $>1$.

- Furstenberg was motivated by the result of Sárközy: $S \subseteq \mathbb{Z}$ has positive upper Banach density, then there are $x, n \in \mathbb{N}$ such that $x, x+n^{2} \in S$.
- Furstenberg proved norm convergence for $A_{N}^{P} f$ and deduced the polynomial Poincaré recurrence theorem: if $\mu(X)<\infty$ and $E \in \mathcal{B}(X)$ with $\mu(E)>0$, then $\mu\left(E \cap T^{-P(n)}[E]\right)>0$ for some $n \in \mathbb{N}$.
Bellow and Furstenberg question was very hard. Even for $P(n)=n^{2}$, since $(n+1)^{2}-n^{2}=2 n+1$. For overcoming this problem, Bourgain used the ideas from the circle method of Hardy and Littlewood to show:
- $L^{p}(X)$ boundedness of the maximal function for any $1<p \leq \infty$.
- Given an increasing sequence $\left(N_{j}: j \in \mathbb{N}\right)$, for each $J \in \mathbb{N}$ one has

$$
\left(\sum_{j=0}^{J}\left\|\sup _{N_{j} \leq N<N_{j+1}}\left|A_{N}^{P} f-A_{N_{j}}^{P} f\right|\right\|_{L^{2}(X)}^{2}\right)^{1 / 2} \leq o\left(J^{1 / 2}\right)\|f\|_{L^{2}(X)}
$$

## Furstenberg-Bergelson-Leibman conjecture

One of the central open problems in pointwise ergodic theory (from the mid 1980's) is a conjecture of Furstenberg-Bergelson-Leibman:

## Theorem (Furstenberg-Bergelson-Leibman conjecture)

Let $\mathbb{G}$ be a nilpotent group of measure preserving transformations of a probability space $(X, \mathcal{B}(X), \mu)$. Let $P_{j, i} \in \mathbb{Z}[\mathrm{n}]$ be polynomials and $T_{1}, \ldots, T_{d} \in \mathbb{G}$ and $f_{1}, \ldots, f_{m} \in L^{\infty}(X)$. Does the limit of the averages

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} f_{1}\left(T_{1}^{P_{1,1}(n)} \cdots T_{d}^{P_{1, d}(n)} x\right) \cdot \ldots \cdot f_{m}\left(T_{1}^{P_{m, 1}(n)} \cdots T_{d}^{P_{m, d}(n)} x\right) \tag{1}
\end{equation*}
$$

exist $\mu$-almost everywhere on $X$ as $N \rightarrow \infty$ ?

- The norm convergence in $L^{2}(X)$ for the averages (1) was established in the nilpotent setting by M. Walsh in 2012 .
- Bergelson and Leibman showed that $L^{2}(X)$ norm convergence for (1) may fail if $\mathbb{G}$ is a solvable group.
- The nilpotent setting is probably the most general setting where the conjecture of Furstenberg-Bergelson-Leibman might be true.


## Recent contribution to the nilpotent setting

Linear and nilpotent variant of the Furstenberg-Bergelson-Leibman problem can be summarize as follows:

## Theorem (M., Ionescu, Magyar, and Szarek (2021))

Let $(X, \mathcal{B}(X), \mu)$ be a $\sigma$-finite space and let $T_{1}, \ldots, T_{d}: X \rightarrow X$ be a family of invertible and measure preserving transformations satisfying

$$
\left[\left[T_{i}, T_{j}\right], T_{k}\right]=\text { Id } \quad \text { for all } \quad 1 \leq i \leq j \leq k \leq d .
$$

Then for every polynomials $P_{1}, \ldots, P_{d} \in \mathbb{Z}[\mathrm{n}]$ and every $f \in L^{p}(X)$ with $1<p<\infty$ the averages

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(T_{1}^{P_{1}(n)} \cdots T_{d}^{P_{d}(n)} x\right)
$$

converge for $\mu$-almost every $x \in X$ and in $L^{p}(X)$ norm as $N \rightarrow \infty$.

- One can think that $T_{1}, \ldots, T_{d}$ belong to a nilpotent group of step two of measure preserving mappings of a $\sigma$-finite space $(X, \mathcal{B}(X), \mu)$.


## Recent contribution to the bilinear setting

After Bourgain's pointwise bilinear ergodic theorem for

$$
A_{N}^{a \mathrm{n}, b \mathrm{n}}(f, g)(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{a n} x\right) g\left(T^{b n} x\right) \quad a, b \in \mathbb{Z}
$$

jointly with Ben Kruse and Terry Tao we established the following theorem.
Theorem (Krause, M., and Tao, (2020))
Let $(X, \mathcal{B}(X), \mu, T)$ be an invertibe $\sigma$-finite measure-preserving system, let $P \in \mathbb{Z}[\mathrm{n}]$ with $\operatorname{deg}(P) \geq 2$, and let $f \in L^{p_{1}}(X)$ and $g \in L^{p_{2}}(X)$ for some $p_{1}, p_{2} \in(1, \infty)$ with $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p} \leq 1$. Then the Furstenberg-Weiss averages

$$
A_{N}^{\mathrm{n}, P(\mathrm{n})}(f, g)(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) g\left(T^{P(n)} x\right)
$$

converge for $\mu$-almost every $x \in X$ and in $L^{p}(X)$ norm as $N \rightarrow \infty$.
Corollary
For any irrational $\theta \in \mathbb{R}$, for any Lebesgue measurable sets $E, F \subseteq[0,1)$, and for almost every $x \in \mathbb{R}$, one has

$$
\lim _{N \rightarrow \infty} \frac{\#\{1 \leq n \leq N:\{x+\theta n\} \in E,\{x+\theta P(n)\} \in F\}}{N}=|E||F| .
$$

## Key ideas

The proof of pointwise convergence for

$$
A_{N}^{\mathrm{n}, P(\mathrm{n})}(f, g)(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) g\left(T^{P(n)} x\right)
$$

is quite intricate, and relies on several deep results in the literature:

- the Ionescu-Wainger multiplier theorem (discrete Littlewood-Paley theory and paraproduct theory) - (HA)\&(NT);
- The circle method of Hardy and Littlewood - (NT);
- the inverse theory of Peluse and Prendeville - (CO)\&(NT);
- Hahn-Banach separation theorem - (FA);
- $L^{p}$-improving estimates of Han-Kovač-Lacey-Madrid-Yang (derived from the Vinogradov mean value theorem) - (HA)\&(NT);
- Rademacher-Menshov argument combined with Khinchine's inequality - (HA) \& (FA) \& (PR);
- $L^{p}(\mathbb{R})$ bounds for a shifted square function - (HA);
- bounded metric entropy argument from Banach space theory(CO) \& (FA) \& (PR);
- van der Corput type estimates in the p-adic fields - (HA)\&(NT).


## Inverse theorem of Peluse and Prendiville

An important ingredient in the proof is the inverse theorem of Peluse, which can be thought of as a counterpart of Weyl's inequality:

## Theorem (Peluse, (2019/2020))

Let $m \geq 2$ and $P_{1}, \ldots, P_{m} \in \mathbb{Z}[\mathrm{n}]$ each having zero constant term such that $\operatorname{deg} P_{1}<\ldots<\operatorname{deg} P_{m}$. Let $N \in \mathbb{N}$ and $\delta \in(0,1)$ and assume that functions $f_{0}, f_{1}, \ldots, f_{m}: \mathbb{Z} \rightarrow \mathbb{C}$ are supported on $\left[-N_{0}, N_{0}\right]$ for some $N_{0} \simeq N^{\operatorname{deg} P_{m}}$, and $\left\|f_{0}\right\|_{L^{\infty}(\mathbb{Z})},\left\|f_{1}\right\|_{L^{\infty}(\mathbb{Z})}, \ldots,\left\|f_{m}\right\|_{L^{\infty}(\mathbb{Z})} \leq 1$, and suppose that

$$
\left\|\frac{1}{N} \sum_{n=1}^{N} f_{0}(x) f_{1}\left(x-P_{1}(n)\right) \cdots f_{m}\left(x-P_{m}(n)\right)\right\|_{L_{x}^{1}(\mathbb{Z})} \geq \delta N^{\operatorname{deg} P_{m}}
$$

Then there are $1 \leq q \lesssim \delta^{-O(1)}$ and $\delta^{O(1)} N^{\operatorname{deg} P_{1}} \lesssim M \leq N^{\operatorname{deg} P_{1}}$ such that

$$
\left\|\frac{1}{M} \sum_{y=1}^{M} f_{1}(x+q y)\right\|_{L_{x}^{1}(\mathbb{Z})} \gtrsim \delta^{O(1)} N^{\operatorname{deg} P_{m}}
$$

provided that $N \gtrsim \delta^{-O(1)}$.

## Bilinear Weyl's inequality

In the multilinear theory Weyl's inequality is inefficient, and inability to invoke Plancherel's theorem forced us to proceed differently. We proved the following bound on minor arcs:

## Theorem (M., Krause, and Tao)

Let $P \in \mathbb{Z}[\mathbf{n}], \operatorname{deg} P \geq 2$ and $P(0)=0$. Let $\mathcal{M}_{\leq l, \leq k}=\bigsqcup_{a / q \in \Sigma_{\leq l}}\left[\frac{a}{q}-2^{-k}, \frac{a}{q}+2^{-k}\right]$ be a family of major arcs corresponding to $\Sigma_{\leq ı}$. If functions $f, g \in \ell^{2}(\mathbb{Z})$ and

1. either $\hat{f}$ vanishes on $\mathcal{M}_{\leq u_{k}, \leq-k+u_{k}}$,
2. or $\hat{g}$ vanishes on $\mathcal{M}_{\leq u_{k}, \leq-d k+u_{k}}$, then we have

$$
\left\|2^{-k} \sum_{n=1}^{2^{k}} f(x-n) g(x-P(n))\right\|_{\ell^{1}(\mathbb{Z})} \lesssim k^{-10}\|f\|_{\ell^{2}(\mathbb{Z})}\|g\|_{\ell^{2}(\mathbb{Z})} .
$$

This theorem is the core of our argument and its proof is quite intricate, and relies on several deep results in the literature, including:

- the Ionescu-Wainger multiplier theorem (discrete Littlewood-Paley theory);
- the inverse theory of Peluse and Prendeville;
- Hahn-Banach separation theorem;
- $L^{p}$-improving estimates of Han-Kovač-Lacey-Madrid-Yang (derived from the Vinogradov mean value theorem).


## Quantitative polynomial Szemerédi's

Let $r_{P_{1}, \ldots, P_{m}}(N)$ denote the size of the largest subset of $\{1, \ldots, N\}$ containing no configuration of the form $x, x+P_{1}(n), \ldots, x+P_{m}(n)$ with $n \neq 0$.

- Berglson and Leibman showed proving polynomial multiple recurrence theorem that

$$
r_{P_{1}, \ldots, P_{m}}(N)=o_{P_{1}, \ldots, P_{m}}(N),
$$

whenever $P_{1}, \ldots, P_{m} \in \mathbb{Z}[\mathrm{n}]$ and each having zero constant term.
Theorem (Gowers (2001), higher order Fourier analysis)
If $P_{1}(n)=n, \ldots, P_{m}(n)=(m-1) n$ for every $m \in \mathbb{N}$ then there is $\gamma_{m}>0$ such that

$$
r_{P_{1}, \ldots, P_{m}}(N) \lesssim \frac{N}{(\log \log N)^{\gamma_{m}}} .
$$

- No bounds were known in general for the polynomial Szemerédi's theorem until a series of recent papers of Peluse and Prendiville.
- Peluse showed that there is a constant $\gamma_{P_{1}, \ldots, P_{m}}>0$ such that

$$
r_{P_{1}, \ldots, P_{m}}(N) \lesssim P_{P_{1}, \ldots, P_{m}} \frac{N}{(\log \log N)^{\gamma_{P_{1}}, \ldots, P_{m}}}
$$

answering a question posed by Gowers.

## Commutative Furstenberg-Bergelson-Leibman conjecture

## Ongoing project (Krause, M., Peluse, and Wright (2021))

Let $(X, \mathcal{B}(X), \mu)$ be a probability space equipped with commuting invertible measure-preserving maps $T_{1}, \ldots, T_{k}: X \rightarrow X$. Consider $P_{1}, \ldots, P_{k} \in \mathbb{Z}[\mathrm{n}]$ with distinct degrees and $f_{1}, \ldots, f_{k} \in L^{\infty}(X)$. It is expected that the averages

$$
A_{N}^{P_{1}, \ldots, P_{k}}\left(f_{1}, \ldots, f_{k}\right)(x)=\frac{1}{N} \sum_{n=1}^{N} f_{1}\left(T_{1}^{P_{1}(n)} x\right) \ldots f_{k}\left(T_{k}^{P_{k}(n)} x\right)
$$

converge for $\mu$-almost every $x \in X$.

- There is some hope in the case when $T_{1}=\ldots=T_{k}=T$.
- We also have made some progress for the following averages

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(T_{1}^{n} x\right) g\left(T_{2}^{n^{2}} x\right)
$$

that correspond to the "squorners": $(x, y),(x+n, y),\left(x, y+n^{2}\right) \in \mathbb{Z}^{2}$, as well as to the following equidistribution result for $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ :

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{1 \leq n \leq N:\{x+\alpha n\} \in E,\left\{x+\beta n^{2}\right\} \in F\right\}}{N}=|E||F|
$$

## Riesz decomposition

- Let $U_{T}: L^{2}(X) \rightarrow L^{2}(X)$ be the operator associated with $T$ defined by

$$
U_{T}(x)=f \circ T(x)=f(T x) .
$$

It is easy to see that for any $f_{1}, f_{2} \in L^{2}(X, \mu)$

$$
\left\langle U_{T} f_{1}, U_{T} f_{2}\right\rangle=\left\langle f_{1}, f_{2}\right\rangle,
$$

we have hence $U_{T}$ is an isometry on $L^{2}(X, \mu)$.

- Let us define

$$
\mathbf{I}_{T}=\left\{f \in L^{2}(X): f \circ T=f\right\} .
$$

Lemma
For every $\sigma$-finite measure-preserving system $(X, \mathcal{B}(X), \mu)$ one has

$$
L^{2}(X)=\mathbf{I}_{T} \oplus \overline{\mathbf{J}_{T}},
$$

where

$$
\mathbf{J}_{T}=\left\{g \circ T-g: g \in L^{2}(X)\right\},
$$

and $\overline{\mathbf{J}_{T}}$ is the closure of $\mathbf{J}_{T}$ in $L^{2}(X)$.

## Proof of Riesz decomposition

## Proof.

The proof will be completed if we show that $\mathbf{I}_{T}=\mathbf{J}_{T}^{\perp}$.

- For the inclusion ' $\subseteq$ ' observe that if $U_{T} f=f$ then we have

$$
\left\langle f, U_{T} g-g\right\rangle=\left\langle U_{T} f, U_{T} g\right\rangle-\langle f, g\rangle=0,
$$

hence $\mathbf{I}_{T} \subseteq \mathbf{J}_{T}^{\perp}$.

- For the opposite inclusion ' $\supseteq$ ' note that if $f \in \mathbf{J}_{T}^{\perp}$ then for all $g \in L^{2}(X)$ we have

$$
\left\langle U_{T} g, f\right\rangle=\langle g, f\rangle,
$$

hence $U_{T}^{*} f=f$. Therefore, $f=U_{T} f$ since

$$
\begin{aligned}
\left\|U_{T} f-f\right\|_{L^{2}(X)}^{2} & =\left\|U_{T} f\right\|_{L^{2}(X)}^{2}-\left\langle U_{T} f, f\right\rangle-\left\langle f, U_{T} f\right\rangle+\|f\|_{L^{2}(X)}^{2} \\
& =2\|f\|_{L^{2}(X)}^{2}-\left\langle U_{T}^{*} f, f\right\rangle-\left\langle f, U_{T}^{*} f,\right\rangle=0 .
\end{aligned}
$$

This completes the proof of the lemma.

## von Neumann's ergodic theorem

Now we are able to prove von Neumann's mean ergodic theorem.

## Theorem

Let $(X, \mathcal{B}, \mu, T)$ be a measure-preserving system then for every $f \in L^{2}(X)$ the averages

$$
A_{N} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)
$$

converge in $L^{2}(X)$ to Pf the orthogonal projection in $L^{2}(X)$ of $f$ onto the space

$$
\mathbf{I}_{T}=\left\{f \in L^{2}(X): f \circ T=f\right\}
$$

## Proof.

In view of Riesz decomposition it suffices to prove von Neumann's theorem for any function $f=f_{1}+f_{2}$ where $f_{1} \in \mathbf{I}_{T}$ and $f_{2} \in \mathbf{J}_{T}$.

- For $f_{1} \in \mathbf{I}_{T}$ our result is obvious since $A_{N} f_{1}=f_{1}$ for every $N \in \mathbb{N}$.


## Proof von Neumann's ergodic theorem

- If $f_{2} \in \mathbf{J}_{T}$ then $f_{2}=g \circ T-g$ for some $g \in L^{2}(X)$ and

$$
\begin{aligned}
\left\|A_{N} f_{2}\right\|_{L^{2}(X)}= & \left\|\frac{1}{N} \sum_{n=1}^{N}\left(g \circ T^{n+1}-g \circ T^{n}\right)\right\|_{L^{2}(X)} \\
& =\frac{1}{N}\left\|g \circ T^{N+1}-g \circ T\right\|_{L^{2}(X)} \leq \frac{2}{N}\|g\|_{L^{2}(X) \underset{N \rightarrow \infty}{ }} 0 .
\end{aligned}
$$

The proof of Theorem 10 is completed.

## Question

- What about pointwise almost everywhere convergence for $A_{N} f$ whenever $f \in L^{2}(X)$ ?
- By a general theorem of Riesz we know that norm convergence (or even convergence in measure) implies convergence pointwise almost everywhere of $A_{N_{k}} f$ for certain subsequence $\left(N_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$.


## Hardy-Littlewood maximal inequality on $\mathbb{Z}$

## Theorem

For a finitely supported function $f: \mathbb{Z} \rightarrow \mathbb{C}$ and for every $N \in \mathbb{N}$ define

$$
M_{N} f(x)=\frac{1}{N} \sum_{k=1}^{N} f(x-k),
$$

which is $A_{N, \mathbb{Z}, S} f$ with $X=\mathbb{Z}$ and the shift operator $S(x)=x-1$. Let

$$
E_{\lambda}=\left\{x \in \mathbb{Z}: \sup _{N \in \mathbb{N}}\left|M_{N} f(x)\right|>\lambda\right\}, \quad \lambda>0 .
$$

Then there is $C>0$ such that for every $\lambda>0$ we have

$$
\begin{equation*}
\left|E_{\lambda}\right| \leq \frac{C}{\lambda} \sum_{x \in E_{\lambda}}|f(x)| \leq \frac{C}{\lambda}\|f\|_{\ell^{1}(\mathbb{Z})} \tag{2}
\end{equation*}
$$

and if $1<p \leq \infty$ then

$$
\begin{equation*}
\left\|\sup _{N \in \mathbb{N}} \mid M_{N} f\right\|_{\ell_{\rho}(\mathbb{Z})} \leq \frac{C p}{p-1}\|f\|_{\ell^{p}(\mathbb{Z})} . \tag{3}
\end{equation*}
$$

## Proof of the Hardy-Littlewood maximal inequality on $\mathbb{Z}$

To prove (2) we will use Vitali type argument. Let $f \geq 0$ and define

$$
E_{\lambda}^{N}=\left\{x \in \mathbb{Z} \cap[-N, N]: \sup _{N \in \mathbb{N}} M_{N} f(x)>\lambda\right\}
$$

- For every $x \in E_{\lambda}^{N}$ there is $N_{x} \in \mathbb{N}$ such that

$$
M_{N_{x}} f(x)=\frac{1}{N_{x}} \sum_{k=1}^{N_{x}} f(x-k)>\lambda .
$$

- Then we see that

$$
E_{\lambda}^{N} \subseteq \bigcup_{x \in E_{\lambda}^{N}} B_{x},
$$

where $B_{x}=x+\left(-N_{x}, N_{x}\right) \subseteq E_{\lambda}^{N}$.

- Note that it is easy to find a finite sub-collection of disjoint intervals $\left\{B_{x_{1}}, B_{x_{2}}, \ldots, B_{x_{j}}\right\}$, such that $N_{x_{1}} \geq N_{x_{2}} \geq \ldots \geq N_{x_{J}}$ and

$$
\bigcup_{n \in E_{\lambda}^{N}} B_{n} \subseteq \bigcup_{n=1}^{J} 3 B_{x_{n}}=\bigcup_{n=1}^{J}\left(x_{n}-3 N_{x_{n}}, x_{n}+3 N_{x_{n}}\right)
$$

## Proof of the Hardy-Littlewood maximal inequality on $\mathbb{Z}$

- The

$$
\left|E_{\lambda}^{N}\right| \leq\left|\bigcup_{n \in E_{\lambda}^{N}} B_{n}\right| \leq 3\left|\bigcup_{n=1}^{J} B_{x_{n}}\right|=3 \sum_{n=1}^{J}\left|B_{x_{n}}\right| .
$$

- Finally, we obtain

$$
\begin{aligned}
\left|E_{\lambda}^{N}\right| & \leq 3 \sum_{n=1}^{J}\left|B_{x_{n}}\right| \\
& \leq \frac{9}{\lambda} \sum_{n=1}^{J} \sum_{k \in\left(-N_{x_{n}}, N_{x_{n}}\right)} f\left(x_{n}-k\right) \\
& \leq \frac{9}{\lambda} \sum_{x \in E_{\lambda}^{N}} f(x) .
\end{aligned}
$$

This completes the proof of inequality (2).

## Proof of the Hardy-Littlewood maximal inequality on $\mathbb{Z}$

In the proof of inequality (3) we will use (2). Indeed, by (2), Fubini theorem and Hölder's inequality we have

$$
\begin{aligned}
\left\|\sup _{N \in \mathbb{N}} M_{N} f\right\|_{\ell^{p}(\mathbb{Z})}^{p} & =p \int_{0}^{\infty} \lambda^{p-1}\left|\left\{x \in \mathbb{Z}: \sup _{N \in \mathbb{N}}\left|M_{N} f(x)\right|>\lambda\right\}\right| d \lambda \\
& \leq 9 p \int_{0}^{\infty} \lambda^{p-2} \sum_{x \in E_{\lambda}}|f(x)| d \lambda \\
& =9 p \sum_{x \in \mathbb{Z}}|f(x)| \int_{0}^{\sup _{N \in \mathbb{N}}}\left|M_{N} f(x)\right| \\
& \lambda^{p-2} d \lambda \\
& =\frac{9 p}{p-1} \sum_{x \in \mathbb{Z}}|f(x)| \sup _{N \in \mathbb{N}}\left|M_{N} f(x)\right|^{p-1} \\
& \leq \frac{9 p}{p-1}\|f\|_{\ell^{p}(\mathbb{Z})}\left\|\sup _{N \in \mathbb{N}} M_{N} f(x)\right\|_{\ell^{p}(\mathbb{Z})}^{p-1}
\end{aligned}
$$

and the proof is finished.

## Calderón transference principle

## Theorem

Assume that $B \subseteq \mathbb{Z}$ such that $|B|=\infty$. Let $(X, \mathcal{B}, \mu, T)$ be a dynamical system with the averages

$$
\mathcal{A}_{N ; X, T} f(x)=\frac{1}{|B \cap[0, N]|} \sum_{n \in B \cap[0, N]} f\left(T^{n} x\right)
$$

Let $\mathcal{M}_{N}$ denote $\mathcal{A}_{N ; \mathbb{Z}, S}$ on $(\mathbb{Z}, \mathbf{P}(\mathbb{Z}),|\cdot|, S)$ with $S(x)=x+1$, i.e.

$$
\mathcal{M}_{N} f(x)=\frac{1}{|B \cap[0, N]|} \sum_{n \in B \cap[0, N]} f(x+n)
$$

If for some $p \geq 1$ there is $C_{p}>0$ such that

$$
\begin{equation*}
\left\|\sup _{N \in \mathbb{N}}\left|\mathcal{M}_{N} F\right|\right\|_{\ell^{p}(\mathbb{Z})} \leq C_{p}\|f\|_{\ell^{p}(\mathbb{Z})}, \quad F \in \ell^{p}(\mathbb{Z}) \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\sup _{N \in \mathbb{N}}\left|\mathcal{A}_{N ; X, T} f\right|\right\|_{L^{p}(X)} \leq C_{p}\|f\|_{L^{p}(X)}, \quad f \in L^{p}(X) \tag{5}
\end{equation*}
$$

## Proof of the Calderón transference principle

Assume that $p \geq 1$. Let $J, R \in \mathbb{N}, f \in L^{p}(X)$ and define

$$
F(j)= \begin{cases}f\left(T^{j} x\right) & 0 \leq j \leq J \\ 0 & \text { otherwise }\end{cases}
$$

For a fixed $N \in \mathbb{N}$ such that $1 \leq N \leq R$ and every $0 \leq j \leq J-R$ we have

$$
\begin{aligned}
\mathcal{M}_{N} F(j) & =\frac{1}{|B \cap[0, N]|} \sum_{k \in B \cap[0, N]} F(j+k) \\
& =\frac{1}{|B \cap[0, N]|} \sum_{k \in B \cap[0, N]} f\left(T^{j+k} x\right) \\
& =\mathcal{A}_{N ; X, T} f\left(T^{j} x\right)
\end{aligned}
$$

Thus for $1 \leq N \leq R$ we have

$$
\begin{array}{r}
\sum_{j=0}^{J-R} \sup _{1 \leq N \leq R}\left|\mathcal{A}_{N ; X, T} f\left(T^{j} x\right)\right|^{p}=\sum_{j=0}^{J-R} \sup _{1 \leq N \leq R}\left|\mathcal{M}_{N} F(j)\right|^{p} \leq \sum_{j=0}^{J-R} \sup _{N \in \mathbb{N}}\left|\mathcal{M}_{N} F(j)\right|^{p} \\
\leq\left\|\sup _{N \in \mathbb{N}}\left|\mathcal{M}_{N} f\right|\right\|_{\ell^{p}(\mathbb{Z})}^{p} \leq C_{p}^{p}\|F\|_{\ell^{p}(\mathbb{Z})}^{p}=C_{p}^{p} \sum_{j=0}^{J}\left|f\left(T^{j} x\right)\right|^{p}
\end{array}
$$

## Proof of the Calderón transference principle

Thus

$$
\sum_{j=0}^{J-R} \int_{X} \sup _{1 \leq N \leq R}\left|\mathcal{A}_{N ; X, T} f\left(T^{j} x\right)\right|^{p} d \mu(x) \leq C_{p}^{p} \sum_{j=0}^{J} \int_{X}\left|f\left(T^{j} x\right)\right|^{p} d \mu(x) .
$$

Integrating both sides of this inequality, we get

$$
\left(1-\frac{R}{J}\right)^{1 / p}\left\|\sup _{1 \leq N \leq R}\left|\mathcal{A}_{N ; X, T} f\right|\right\|_{L^{p}(X)} \leq C_{p}\|f\|_{L^{p}(X)}
$$

taking $J \rightarrow \infty$ we obtain

$$
\left\|\sup _{1 \leq N \leq R}\left|\mathcal{A}_{N ; X, T f}\right|\right\|_{L^{p}(X)} \leq C_{p}\|f\|_{L^{p}(X)}
$$

Finally, taking $R \rightarrow \infty$ we have

$$
\left\|\sup _{N \in \mathbb{N}} \mathcal{A}_{N ; X, T}\right\|_{L^{p}(X)} \leq C_{p}\|f\|_{L^{p}(X)}
$$

The proof of the lemma is completed.

## Birkhoff's ergodic theorem

To establish that for every $1 \leq p<\infty$ and every $f \in L^{p}(X)$ there exists $f^{*} \in L^{p}(X)$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} A_{N ; X, T} f(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)=f^{*}(x) \tag{6}
\end{equation*}
$$

one can proceed in two steps:

- Step 1. Quantitative version of ergodic theorem

$$
\begin{gather*}
\left\|\sup _{N \in \mathbb{N}}\left|A_{N ; X, T} f\right|\right\|_{L^{p}(X)} \lesssim\|f\|_{L^{p}(X)} \quad \text { for } \quad p \in(1, \infty]  \tag{7}\\
\mu\left(\left\{x \in X: \sup _{N \in \mathbb{N}}\left|A_{N ; X, T} f(x)\right|>\lambda\right\}\right) \lesssim \lambda^{-1}\|f\|_{L^{1}(X)} \quad \text { for } \quad p=1 \tag{8}
\end{gather*}
$$

The bounds in (7) follow from the Hardy-Littlewood maximal inequality

$$
\left\|\sup _{N \in \mathbb{N}}\left|\frac{1}{N} \sum_{n=1}^{N} f(x-n)\right|\right\|_{\ell^{p}(\mathbb{Z})} \lesssim\|f\|_{\ell^{p}(X)}, \quad \text { for } \quad p \in(1, \infty]
$$

which is $A_{N, \mathbb{Z}, S} f$ with $X=\mathbb{Z}$ and the shift operator $S(x)=x-1$ in (6).

- Step 2. Pointwise convergence on a dense class of functions in $L^{p}(X)$.


## Convergence on a dense class

$$
A_{N} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right)
$$

- $\mathbf{I}_{T}=\left\{f \in L^{2}(X): f \circ T=f\right\}$. If $f \in \mathbf{I}_{T}$, then

$$
A_{N} f=f
$$

$\mu$-almost everywhere.

- $\mathbf{J}_{T}=\left\{g \circ T-g: g \in L^{2}(X) \cap L^{\infty}(X)\right\}$. If $f \in \mathbf{J}_{T}$, then by telescoping

$$
\left|A_{N} f(x)\right|=\frac{1}{N}\left|\sum_{n=1}^{N} g\left(T^{n+1} x\right)-g\left(T^{n} x\right)\right|=\frac{1}{N}\left|g\left(T^{N+1} x\right)-g(T x)\right|_{N \rightarrow \infty}^{\longrightarrow} 0
$$

- $\mathbf{I}_{T} \oplus \mathbf{J}_{T}$ is dense in $L^{2}(X)$ by Riesz decomposition.


## All together: pointwise convergence in $L^{p}(X)$

- Our aim will be to show that for any $f \in L^{2}(X)$ one has

$$
\mu\left(\left\{x \in X:\left(A_{N ; X, T} f(x)\right)_{N \in \mathbb{N}} \text { is not a Cauchy sequence }\right\}\right)=0
$$

- Since $\mathbf{I}_{T} \oplus \mathbf{J}_{T}$ is dense in $L^{2}(X)$ we can find $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathbf{I}_{T} \oplus \mathbf{J}_{T}$ so that $\left\|f_{n}-f\right\|_{L^{2}(X)} \xrightarrow[n \rightarrow \infty]{ } 0$, and $\lim _{M, N \rightarrow \infty}\left|A_{M ; X, T} f_{n}(x)-A_{N ; X, T} f_{n}(x)\right|=0$ for $\mu$ almost every $x \in X$.
- Suppose for a contradiction that there is $\delta>0$ such that

$$
\begin{aligned}
\delta<\mu(\{x \in X: & \left.\left.\limsup _{M, N \rightarrow \infty}\left|A_{M ; X, T} f(x)-A_{N ; X, T} f(x)\right|>\delta\right\}\right) \\
& \leq \mu\left(\left\{x \in X: \sup _{N \in \mathbb{N}}\left|A_{N ; X, T}\left(f_{n}-f\right)(x)\right|>\delta / 2\right\}\right)
\end{aligned}
$$

- By the maximal inequality $\left\|\sup _{N \in \mathbb{N}}\left|A_{N ; X, T} f\right|\right\|_{L^{2}(X)} \lesssim\|f\|_{L^{2}(X)}$ and Chebyshev inequality we obtain a contradiction, since one has

$$
\delta<\mu\left(\left\{x \in X: \sup _{N \in \mathbb{N}}\left|A_{N ; X, T}\left(f_{n}-f\right)(x)\right|>\delta / 2\right\}\right) \leq \frac{C^{2}}{\delta^{2}}\left\|f_{n}-f\right\|_{L^{2}(X)}^{2} \stackrel{n \rightarrow \infty}{ } 0
$$

$\checkmark$ For $p \neq 2$ we repeat the argument using the fact that $L^{2}(X) \cap L^{p}(X)$ is dense in $L^{p}(X)$ for any $1 \leq p<\infty$.

## Bourgain's pointwise ergodic theorem

In the early 1980's Bellow and Furstenberg asked independently about the poinwise convergence for polynomial ergodic averages

$$
A_{N ; X, T}^{P} f(x):=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{P(n)} x\right) \quad \text { for } \quad x \in X
$$

where $P \in \mathbb{Z}[\mathrm{n}]$ is a polynomial of degree $>1$.
Bourgain used the circle method of Hardy and Littlewood to show:
$\checkmark L^{p}(X)$ boundedness of the maximal function for any $1<p \leq \infty$, i.e.

$$
\left\|\sup _{N \in \mathbb{N}} \mid A_{N ; X, T}^{P} f\right\|_{L^{p}(X)} \lesssim\|f\|_{L^{p}(X)} \quad \text { for } \quad p \in(1, \infty]
$$

- Given an increasing sequence $\left(N_{j}: j \in \mathbb{N}\right)$, for each $J \in \mathbb{N}$ one has

$$
\left(\sum_{j=0}^{J}\left\|\sup _{N_{j} \leq N<N_{j+1}}\left|A_{N ; X, T}^{P} f-A_{N_{j} ; X, T}^{P} f\right|\right\|_{L^{2}(X)}^{2}\right)^{1 / 2} \leq o\left(J^{1 / 2}\right)\|f\|_{L^{2}(X)}
$$

## Oscillation inequality for Birkhoff's operators

Recall that

$$
A_{N ; X, T} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) .
$$

Fix $\tau \in(1,2]$ and define $\Lambda=\left\{\left\lfloor\tau^{k}\right\rfloor: k \in \mathbb{N} \cup\{0\}\right\}$. Let $\left(k_{j}\right)_{j \in \mathbb{N}}$ be an increasing sequence and set $N_{j}=\left\lfloor\tau^{k_{j}}\right\rfloor$.

## Theorem

Let $(X, \mathcal{B}(X), \mu, T)$ be a measure-preserving system then for every $J \in \mathbb{N}$ there is $C_{J}>0$ such that we have

$$
\begin{equation*}
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|A_{N ; X, T} f-A_{N_{j} ; X, T} f\right|\right\|_{L^{2}(X)}^{2} \leq C_{J}\|f\|_{L^{2}(X)}^{2} \tag{9}
\end{equation*}
$$

and $\lim _{J \rightarrow \infty} C_{J} / J=0$. In particular, for every $f \in L^{2}(X)$ there exists $f^{*} \in L^{2}(X)$ such that

$$
\lim _{N \rightarrow \infty} A_{N ; X, T} f(x)=f^{*}(x)
$$

for $\mu$-almost every $x \in X$.

## Proof of the oscillation inequality for Birkhoff's operators

- Repeating the same argument as in the proof of transference principle it only suffices to work with $(\mathbb{Z}, \mathbf{P}(\mathbb{Z}),|\cdot|, S)$ with $S(x)=x-1$. Then

$$
A_{N ; X, S} f(x)=M_{N} f(x)=\frac{1}{N} \sum_{n=1}^{N} f(x-n)=K_{N} * f(x), \quad f \in \ell^{2}(\mathbb{Z})
$$

where

$$
K_{N}(x)=\frac{1}{N} \sum_{n=1}^{N} \delta_{n}(x), \quad x \in \mathbb{Z}
$$

- By the bounds for the Hardy-Littlewood maximal function

$$
\left\|\sup _{N \in \mathbb{N}} \mid M_{N} f\right\|_{\ell^{p}(\mathbb{Z})} \lesssim\|f\|_{\ell^{p}(\mathbb{Z})}
$$

one can assume that $f \in \ell^{2}(\mathbb{Z}) \cap \ell^{\infty}(\mathbb{Z})$ and $f \geq 0$ is finitely supported.

- For $f \in \ell^{1}(\mathbb{Z})$ let us denote by

$$
\hat{f}(\xi)=\sum_{n \in \mathbb{Z}} e^{2 \pi i n \xi} f(n)
$$

the discrete Fourier transform on $\mathbb{Z}$ and let $\mathcal{F}^{-1}$ be its inverse.

## Proof of the oscillation inequality for Birkhoff's operators

- One can see that $\widehat{M_{N} f}(\xi)=\hat{K}_{N}(\xi) \hat{f}(\xi)$, where

$$
\hat{K}_{N}(\xi)=\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i n \xi}
$$

- Let $B_{j}=\left\{x \in(-1 / 2,1 / 2):|x| \leq N_{j}^{-1}\right\}$. By Plancherel's theorem

$$
\begin{aligned}
& \sum_{j=0}^{J} \| \sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j+1}} \hat{f}\right)\right| \|_{\ell^{2}}^{2} \\
& \leq \sum_{j=0}^{J} \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left\|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j+1}} \hat{f}\right)\right\|_{\ell^{2}}^{2} \\
& \leq\left\|\sum_{j=0}^{J} \mathbb{1}_{B_{j+1}} \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\hat{K}_{N}-\hat{K}_{N_{j}}\right|^{2}\right\|_{L^{\infty}}\|f\|_{\ell^{2}}^{2}
\end{aligned}
$$

## Proof of the oscillation inequality for Birkhoff's operators

- For $N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]$ we have

$$
\left|\hat{K}_{N}(\xi)-\hat{K}_{N_{j}}(\xi)\right| \lesssim|\xi| N,
$$

hence

$$
\begin{aligned}
& \sum_{j=0}^{J} \mathbb{1}_{B_{j+1}}(\xi) \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\hat{K}_{N}(\xi)-\hat{K}_{N_{j}}(\xi)\right|^{2} \\
& \lesssim|\xi|^{2} \sum_{j=0}^{J} \mathbb{1}_{B_{j+1}}(\xi) \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]} N^{2} \\
& \lesssim|\xi|^{2} \sum_{j: N_{j+1} \leq|\xi|^{-1}} N_{j+1}^{2} \lesssim 1 .
\end{aligned}
$$

Therefore, we obtain

$$
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j+1}} \hat{f}\right)\right|\right\|_{\ell^{2}}^{2} \lesssim\|f\|_{\ell^{2}}^{2}
$$

## Proof of the oscillation inequality for Birkhoff's operators

- Similar for $B_{j}^{c}$, replacing $\hat{K}_{N_{j}}$ by $\hat{K}_{N_{j+1}}$ under the supremum, we can estimate

$$
\begin{aligned}
& \sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j}^{c}} \hat{f}\right)\right|\right\|_{\ell^{2}}^{2} \\
& \lesssim \sum_{j=0}^{J} \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]}\left\|\mathcal{F}^{-1}\left(\left(\hat{K}_{N_{j+1}}-\hat{K}_{N}\right) \mathbb{1}_{B_{j}} \hat{c}\right)\right\|_{\ell^{2}}^{2} \\
& \leq\left\|\sum_{j=0}^{J} \mathbb{1}_{B_{j}^{c}} \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]}\left|\hat{K}_{N_{j+1}}-\hat{K}_{N}\right|^{2}\right\|_{L^{\infty}}\|f\|_{\ell^{2}}^{2}
\end{aligned}
$$

Now for $N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]$ we obtain

$$
\left|\hat{K}_{N_{j+1}}(\xi)-\hat{K}_{N}(\xi)\right| \lesssim|\xi|^{-1} N^{-1}
$$

## Proof of the oscillation inequality for Birkhoff's operators

- Thus

$$
\begin{aligned}
& \sum_{j=0}^{J} \mathbb{1}_{B_{j}^{c}}(\xi) \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]}\left|\hat{K}_{N_{j+1}}(\xi)-\hat{K}_{N}(\xi)\right|^{2} \\
& \lesssim|\xi|^{-2} \sum_{j=0}^{J} \mathbb{1}_{B_{j}^{c}}(\xi) \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]} N^{-2} \\
& \lesssim|\xi|^{-2} \sum_{j: N_{j} \geq|\xi|^{-1}} N_{j}^{-2} \lesssim 1 .
\end{aligned}
$$

Therefore, we conclude

$$
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j}^{c}} \hat{f}\right)\right|\right\|_{\ell^{2}}^{2} \lesssim\|f\|_{\ell^{2}}^{2}
$$

## Proof of the oscillation inequality for Birkhoff's operators

- Finally, for $p=2$ we obtain

$$
\begin{aligned}
\sum_{j=0}^{J} \| \sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]} \mid \mathcal{F}^{-1}\left(\left(\hat{K}_{N}\right.\right. & \left.\left.-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j}} \mathbb{1}_{B_{j+1}^{c}} \hat{f}\right) \mid \|_{\ell^{2}}^{2} \\
& \lesssim \sum_{j=0}^{J}\left\|\mathcal{F}^{-1}\left(\mathbb{1}_{B_{j}} \mathbb{1}_{B_{j+1}^{c}} \hat{f}\right)\right\|_{\ell^{2}}^{2} \leq\|f\|_{\ell^{2}}^{2}
\end{aligned}
$$

- Hence

$$
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|A_{N ; X, T} f-A_{N_{j} ; X, T} f\right|\right\|_{L^{2}(X)}^{2} \leq C_{J}\|f\|_{L^{2}(X)}^{2}
$$

- In fact we have proved that $C_{J}$ is constant. The proof of (9) is completed.


## How oscillations imply pointwise convergence

- By the maximal inequality for $p=2$ we can assume that $f \in L^{2}(X)$ is bounded and $\|f\|_{L^{\infty}(X)} \leq 1$.
- Suppose for a contradiction that $\left(A_{N ; X, T} f(x)\right)_{N \in \mathbb{N}}$ does not converge. Then there is $\varepsilon \in(0,1)$ such that

$$
\mu\left(\left\{x \in X: \limsup _{M, N \rightarrow \infty}\left|A_{M ; X, T} f(x)-A_{N ; X, T} f(x)\right|>8 \varepsilon\right\}\right)>8 \varepsilon
$$

- Thus there exists $\left(k_{j}\right)_{j \in \mathbb{N}}$ such that

$$
\mu\left(\left\{x \in X: \sup _{N_{j}<N \leq N_{j+1}}\left|A_{N ; X, T} f(x)-A_{N_{j} ; X, T} f(x)\right|>4 \varepsilon\right\}\right)>4 \varepsilon,
$$

where $N_{j}=\left\lfloor\tau^{k_{j}}\right\rfloor$ and $\tau=1+\varepsilon / 4$.

- If $\left\lfloor\tau^{k}\right\rfloor \leq N<\left\lfloor\tau^{k+1}\right\rfloor$ then

$$
\begin{gathered}
\left|A_{N ; X, T} f-A_{\left\lfloor\tau^{k}\right\rfloor ; X, T} f\right|=\left|\frac{1}{N} \sum_{n=\left\lfloor\tau^{k}\right\rfloor+1}^{N} f\left(T^{n} x\right)-\frac{N-\left\lfloor\tau^{k}\right\rfloor}{N\left\lfloor\tau^{k}\right\rfloor} \sum_{n=1}^{\left\lfloor\tau^{k}\right\rfloor} f\left(T^{n} x\right)\right| \\
\leq \frac{2\left(N-\left\lfloor\tau^{k}\right\rfloor\right)}{N} \leq \frac{4 \tau^{k}(\tau-1)}{\tau^{k}}+\frac{4}{\tau^{k}}=4(\tau-1)+\frac{4}{\tau^{k}}<2 \varepsilon
\end{gathered}
$$

for $k \geq k_{0}$, since we can always arrange $k_{0}$ to satisfy $\tau^{-k_{0}}<\varepsilon / 4$.

## How oscillations imply pointwise convergence

- Therefore, we obtain that

$$
\mu\left(\left\{x \in X: \sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|A_{N ; X, T} f(x)-A_{N_{j} ; X, T} f(x)\right|>\varepsilon\right\}\right)>\varepsilon .
$$

- Now applying oscillation inequality we obtain that

$$
0<\varepsilon^{3} \leq \frac{1}{J} \sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]} \mid A_{N ; X, T} f-A_{N_{j} ; X, T} f\right\|_{L^{2}(X)}^{2} \leq J^{-1} C_{J}\|f\|_{L^{2}(X)}^{2},
$$

but it is impossible since, the right-hand side tends to 0 as $J \rightarrow \infty$.

- This proves the pointwise convergence of $A_{N ; X, T} f$ on $L^{2}(X)$ and completes the proof.


## Dziękuję!

