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Khinchin’s equidistribution theorem
Theorem (Birkhoff ergodic theorem, (1931))
Let (X,B(X), µ,T) be a σ-finite measure preserving system. For every
1 ≤ p <∞ and every f ∈ Lp(X) there exists f ∗ ∈ Lp(X) such that

1
N

N∑
n=1

f (Tnx) −−−→N→∞ f ∗(x)

I In 1933 Khinchin had the great insight to see how to generalize the
classical equidistribution result by using Birkhoff’s ergodic theorem
and proved that for any irrational θ ∈ R, for any Lebesgue measurable
set E ⊆ [0, 1), and for almost every x ∈ R, one has

lim
N→∞

#{1 ≤ n ≤ N : {x + θn} ∈ E}
N

= |E|,

I A famous Bellow problem from the early 1980’s asks whether the same
conclusion holds in Khinchin’s result if we replace n with any
polynomial P(n) with integer coefficients.



Bourgain’s pointwise ergodic theorem
In the early 1980’s Bellow and Furstenberg asked independently about the
poinwise convergence for polynomial ergodic averages

AP
N f (x) :=

1
N

N∑
n=1

f (TP(n)x) for x ∈ X,

where P ∈ Z[n] is a polynomial of degree > 1.
I Furstenberg was motivated by the result of Sárközy: S ⊆ Z has positive

upper Banach density, then there are x, n ∈ N such that x, x + n2 ∈ S.
I Furstenberg proved norm convergence for AP

N f and deduced the
polynomial Poincaré recurrence theorem: if µ(X) <∞ and E ∈ B(X)
with µ(E) > 0, then µ(E ∩ T−P(n)[E]) > 0 for some n ∈ N.

Bellow and Furstenberg question was very hard. Even for P(n) = n2, since
(n + 1)2 − n2 = 2n + 1. For overcoming this problem, Bourgain used the
ideas from the circle method of Hardy and Littlewood to show:
I Lp(X) boundedness of the maximal function for any 1 < p ≤ ∞.
I Given an increasing sequence (Nj : j ∈ N), for each J ∈ N one has( J∑

j=0

∥∥ sup
Nj≤N<Nj+1

∣∣AP
N f − AP

Nj
f
∣∣∥∥2

L2(X)

)1/2
≤ o(J1/2)‖ f‖L2(X).



Furstenberg–Bergelson–Leibman conjecture
One of the central open problems in pointwise ergodic theory (from the mid
1980’s) is a conjecture of Furstenberg–Bergelson–Leibman:

Theorem (Furstenberg–Bergelson–Leibman conjecture)
Let G be a nilpotent group of measure preserving transformations of a
probability space (X,B(X), µ). Let Pj,i ∈ Z[n] be polynomials and
T1, . . . ,Td ∈ G and f1, . . . , fm ∈ L∞(X). Does the limit of the averages

1
N

N∑
n=1

f1(TP1,1(n)
1 · · · TP1,d(n)

d x) · . . . · fm(TPm,1(n)
1 · · · TPm,d(n)

d x) (1)

exist µ-almost everywhere on X as N →∞?

I The norm convergence in L2(X) for the averages (1) was established in
the nilpotent setting by M. Walsh in 2012 .

I Bergelson and Leibman showed that L2(X) norm convergence for (1)
may fail if G is a solvable group.

I The nilpotent setting is probably the most general setting where the
conjecture of Furstenberg–Bergelson–Leibman might be true.



Recent contribution to the nilpotent setting
Linear and nilpotent variant of the Furstenberg–Bergelson–Leibman
problem can be summarize as follows:

Theorem (M., Ionescu, Magyar, and Szarek (2021))
Let (X,B(X), µ) be a σ-finite space and let T1, . . . ,Td : X → X be a family
of invertible and measure preserving transformations satisfying

[[Ti,Tj],Tk] = Id for all 1 ≤ i ≤ j ≤ k ≤ d.

Then for every polynomials P1, . . . ,Pd ∈ Z[n] and every f ∈ Lp(X) with
1 < p <∞ the averages

1
N

N∑
n=1

f (TP1(n)
1 · · · TPd(n)

d x)

converge for µ-almost every x ∈ X and in Lp(X) norm as N →∞.

I One can think that T1, . . . ,Td belong to a nilpotent group of step two of
measure preserving mappings of a σ-finite space (X,B(X), µ).



Recent contribution to the bilinear setting
After Bourgain’s pointwise bilinear ergodic theorem for

Aan,bn
N ( f , g)(x) =

1
N

N∑
n=1

f (Tanx)g(Tbnx) a, b ∈ Z

jointly with Ben Kruse and Terry Tao we established the following theorem.

Theorem (Krause, M., and Tao, (2020))
Let (X,B(X), µ,T) be an invertibe σ-finite measure-preserving system, let
P ∈ Z[n] with deg(P) ≥ 2, and let f ∈ Lp1(X) and g ∈ Lp2(X) for some
p1, p2 ∈ (1,∞) with 1

p1
+ 1

p2
= 1

p ≤ 1. Then the Furstenberg–Weiss averages

An,P(n)
N ( f , g)(x) =

1
N

N∑
n=1

f (Tnx)g(TP(n)x)

converge for µ-almost every x ∈ X and in Lp(X) norm as N →∞.

Corollary
For any irrational θ ∈ R, for any Lebesgue measurable sets E,F ⊆ [0, 1),
and for almost every x ∈ R, one has

lim
N→∞

#{1 ≤ n ≤ N : {x + θn} ∈ E, {x + θP(n)} ∈ F}
N

= |E||F|.



Key ideas
The proof of pointwise convergence for

An,P(n)
N ( f , g)(x) =

1
N

N∑
n=1

f (Tnx)g(TP(n)x)

is quite intricate, and relies on several deep results in the literature:
I the Ionescu–Wainger multiplier theorem (discrete Littlewood–Paley

theory and paraproduct theory) — (HA)&(NT);
I The circle method of Hardy and Littlewood — (NT);
I the inverse theory of Peluse and Prendeville — (CO)&(NT);
I Hahn–Banach separation theorem — (FA);
I Lp-improving estimates of Han–Kovač–Lacey–Madrid–Yang (derived

from the Vinogradov mean value theorem) — (HA)&(NT);
I Rademacher–Menshov argument combined with Khinchine’s inequality

— (HA)&(FA)&(PR);
I Lp(R) bounds for a shifted square function — (HA);
I bounded metric entropy argument from Banach space theory—

(CO)&(FA)&(PR);
I van der Corput type estimates in the p-adic fields — (HA)&(NT).



Inverse theorem of Peluse and Prendiville
An important ingredient in the proof is the inverse theorem of Peluse, which
can be thought of as a counterpart of Weyl’s inequality:

Theorem (Peluse, (2019/2020))
Let m ≥ 2 and P1, . . . ,Pm ∈ Z[n] each having zero constant term such that
degP1 < . . . < degPm. Let N ∈ N and δ ∈ (0, 1) and assume that functions
f0, f1, . . . , fm : Z→ C are supported on [−N0,N0] for some N0 ' NdegPm ,
and ‖ f0‖L∞(Z), ‖ f1‖L∞(Z), . . . , ‖ fm‖L∞(Z) ≤ 1, and suppose that

∥∥∥ 1
N

N∑
n=1

f0(x)f1(x− P1(n)) · · · fm(x− Pm(n))
∥∥∥

L1
x(Z)
≥ δNdegPm .

Then there are 1 ≤ q . δ−O(1) and δO(1)NdegP1 . M ≤ NdegP1 such that

∥∥∥ 1
M

M∑
y=1

f1(x + qy)
∥∥∥

L1
x(Z)

& δO(1)NdegPm

provided that N & δ−O(1).



Bilinear Weyl’s inequality
In the multilinear theory Weyl’s inequality is inefficient, and inability to
invoke Plancherel’s theorem forced us to proceed differently. We proved the
following bound on minor arcs:

Theorem (M., Krause, and Tao)
Let P ∈ Z[n], degP ≥ 2 and P(0) = 0. LetM≤l,≤k =

⊔
a/q∈Σ≤l

[ a
q − 2−k, a

q + 2−k]

be a family of major arcs corresponding to Σ≤l. If functions f , g ∈ `2(Z) and

1. either f̂ vanishes onM≤uk,≤−k+uk ,

2. or ĝ vanishes onM≤uk,≤−dk+uk , then we have∥∥∥2−k
2k∑

n=1

f (x− n)g(x− P(n))
∥∥∥
`1(Z)

. k−10‖ f‖`2(Z)‖g‖`2(Z).

This theorem is the core of our argument and its proof is quite intricate, and
relies on several deep results in the literature, including:
I the Ionescu–Wainger multiplier theorem (discrete Littlewood–Paley theory);

I the inverse theory of Peluse and Prendeville;

I Hahn–Banach separation theorem;

I Lp-improving estimates of Han–Kovač–Lacey–Madrid–Yang (derived from the
Vinogradov mean value theorem).



Quantitative polynomial Szemerédi’s
Let rP1,...,Pm(N) denote the size of the largest subset of {1, . . . ,N} containing
no configuration of the form x, x + P1(n), . . . , x + Pm(n) with n 6= 0.
I Berglson and Leibman showed proving polynomial multiple recurrence

theorem that
rP1,...,Pm(N) = oP1,...,Pm(N),

whenever P1, . . . ,Pm ∈ Z[n] and each having zero constant term.

Theorem (Gowers (2001), higher order Fourier analysis)
If P1(n) = n, . . . ,Pm(n) = (m− 1)n for every m ∈ N then there is γm > 0
such that

rP1,...,Pm(N) .
N

(log log N)γm
.

I No bounds were known in general for the polynomial Szemerédi’s
theorem until a series of recent papers of Peluse and Prendiville.

I Peluse showed that there is a constant γP1,...,Pm > 0 such that

rP1,...,Pm(N) .P1,...,Pm

N
(log log N)γP1,...,Pm

answering a question posed by Gowers.



Commutative Furstenberg–Bergelson–Leibman conjecture
Ongoing project (Krause, M., Peluse, and Wright (2021))
Let (X,B(X), µ) be a probability space equipped with commuting invertible
measure-preserving maps T1, . . . ,Tk : X → X. Consider P1, . . . ,Pk ∈ Z[n]
with distinct degrees and f1, . . . , fk ∈ L∞(X). It is expected that the averages

AP1,...,Pk
N (f1, . . . , fk)(x) =

1
N

N∑
n=1

f1(TP1(n)
1 x) . . . fk(TPk(n)

k x)

converge for µ-almost every x ∈ X.

I There is some hope in the case when T1 = . . . = Tk = T .
I We also have made some progress for the following averages

1
N

N∑
n=1

f (Tn
1 x)g(Tn2

2 x)

that correspond to the “squorners”: (x, y), (x + n, y), (x, y + n2) ∈ Z2,
as well as to the following equidistribution result for α, β ∈ R \Q:

lim
N→∞

#{1 ≤ n ≤ N : {x + αn} ∈ E, {x + βn2} ∈ F}
N

= |E||F|.



Riesz decomposition
I Let UT : L2(X)→ L2(X) be the operator associated with T defined by

UT(x) = f ◦ T(x) = f (Tx).

It is easy to see that for any f1, f2 ∈ L2(X, µ)

〈UT f1,UT f2〉 = 〈f1, f2〉,

we have hence UT is an isometry on L2(X, µ).

I Let us define
IT = {f ∈ L2(X) : f ◦ T = f}.

Lemma
For every σ-finite measure-preserving system (X,B(X), µ) one has

L2(X) = IT ⊕ JT ,

where
JT = {g ◦ T − g : g ∈ L2(X)},

and JT is the closure of JT in L2(X).



Proof of Riesz decomposition

Proof.
The proof will be completed if we show that IT = J⊥T .

I For the inclusion ‘⊆’ observe that if UT f = f then we have

〈f ,UTg− g〉 = 〈UT f ,UTg〉 − 〈f , g〉 = 0,

hence IT ⊆ J⊥T .
I For the opposite inclusion ‘⊇’ note that if f ∈ J⊥T then for all g ∈ L2(X)

we have
〈UTg, f 〉 = 〈g, f 〉,

hence U∗T f = f . Therefore, f = UT f since

‖UT f − f‖2
L2(X) = ‖UT f‖2

L2(X) − 〈UT f , f 〉 − 〈f ,UT f 〉+ ‖f‖2
L2(X)

= 2‖f‖2
L2(X) − 〈U

∗
T f , f 〉 − 〈f ,U∗T f , 〉 = 0.

This completes the proof of the lemma.



von Neumann’s ergodic theorem
Now we are able to prove von Neumann’s mean ergodic theorem.

Theorem
Let (X,B, µ,T) be a measure-preserving system then for every f ∈ L2(X) the
averages

AN f (x) =
1
N

N∑
n=1

f (Tnx)

converge in L2(X) to Pf the orthogonal projection in L2(X) of f onto the
space

IT = {f ∈ L2(X) : f ◦ T = f}.

Proof.
In view of Riesz decomposition it suffices to prove von Neumann’s theorem
for any function f = f1 + f2 where f1 ∈ IT and f2 ∈ JT .

I For f1 ∈ IT our result is obvious since AN f1 = f1 for every N ∈ N.



Proof von Neumann’s ergodic theorem

I If f2 ∈ JT then f2 = g ◦ T − g for some g ∈ L2(X) and

‖AN f2‖L2(X) =

∥∥∥∥ 1
N

N∑
n=1

(
g ◦ Tn+1 − g ◦ Tn)∥∥∥∥

L2(X)

=
1
N

∥∥g ◦ TN+1 − g ◦ T
∥∥

L2(X)
≤ 2

N
‖g‖L2(X) −−−→N→∞ 0.

The proof of Theorem 10 is completed.

Question
I What about pointwise almost everywhere convergence for AN f

whenever f ∈ L2(X)?
I By a general theorem of Riesz we know that norm convergence (or

even convergence in measure) implies convergence pointwise almost
everywhere of ANk f for certain subsequence (Nk)k∈N ⊆ N.



Hardy–Littlewood maximal inequality on Z
Theorem
For a finitely supported function f : Z→ C and for every N ∈ N define

MN f (x) =
1
N

N∑
k=1

f (x− k),

which is AN,Z,S f with X = Z and the shift operator S(x) = x− 1. Let

Eλ = {x ∈ Z : sup
N∈N
|MN f (x)| > λ}, λ > 0.

Then there is C > 0 such that for every λ > 0 we have

|Eλ| ≤
C
λ

∑
x∈Eλ

|f (x)| ≤ C
λ
‖f‖`1(Z), (2)

and if 1 < p ≤ ∞ then

‖ sup
N∈N
|MN f |‖`p(Z) ≤

Cp
p− 1

‖f‖`p(Z). (3)



Proof of the Hardy–Littlewood maximal inequality on Z
To prove (2) we will use Vitali type argument. Let f ≥ 0 and define

EN
λ = {x ∈ Z ∩ [−N,N] : sup

N∈N
MN f (x) > λ}.

I For every x ∈ EN
λ there is Nx ∈ N such that

MNx f (x) =
1

Nx

Nx∑
k=1

f (x− k) > λ.

I Then we see that
EN
λ ⊆

⋃
x∈EN

λ

Bx,

where Bx = x + (−Nx,Nx) ⊆ EN
λ .

I Note that it is easy to find a finite sub-collection of disjoint intervals
{Bx1 ,Bx2 , . . . ,BxJ}, such that Nx1 ≥ Nx2 ≥ . . . ≥ NxJ and⋃

n∈EN
λ

Bn ⊆
J⋃

n=1

3Bxn =
J⋃

n=1

(xn − 3Nxn , xn + 3Nxn).



Proof of the Hardy–Littlewood maximal inequality on Z

I The

|EN
λ | ≤

∣∣∣ ⋃
n∈EN

λ

Bn

∣∣∣ ≤ 3
∣∣∣ J⋃

n=1

Bxn

∣∣∣ = 3
J∑

n=1

|Bxn |.

I Finally, we obtain

|EN
λ | ≤ 3

J∑
n=1

|Bxn |

≤ 9
λ

J∑
n=1

∑
k∈(−Nxn ,Nxn )

f (xn − k)

≤ 9
λ

∑
x∈EN

λ

f (x).

This completes the proof of inequality (2).



Proof of the Hardy–Littlewood maximal inequality on Z

In the proof of inequality (3) we will use (2). Indeed, by (2), Fubini theorem
and Hölder’s inequality we have

‖ sup
N∈N

MN f‖p
`p(Z) = p

∫ ∞
0

λp−1|{x ∈ Z : sup
N∈N
|MN f (x)| > λ}|dλ

≤ 9p
∫ ∞

0
λp−2

∑
x∈Eλ

|f (x)|dλ

= 9p
∑
x∈Z
|f (x)|

∫ supN∈N |MN f (x)|

0
λp−2dλ

=
9p

p− 1

∑
x∈Z
|f (x)| sup

N∈N
|MN f (x)|p−1

≤ 9p
p− 1

‖f‖`p(Z)‖ sup
N∈N

MN f (x)‖p−1
`p(Z),

and the proof is finished.



Calderón transference principle
Theorem
Assume that B ⊆ Z such that |B| =∞. Let (X,B, µ,T) be a dynamical
system with the averages

AN;X,T f (x) =
1

|B ∩ [0,N]|
∑

n∈B∩[0,N]

f (Tnx).

LetMN denote AN;Z,S on (Z,P(Z), | · |, S) with S(x) = x + 1, i.e.

MN f (x) =
1

|B ∩ [0,N]|
∑

n∈B∩[0,N]

f (x + n).

If for some p ≥ 1 there is Cp > 0 such that

‖ sup
N∈N
|MNF|‖`p(Z) ≤ Cp‖f‖`p(Z), F ∈ `p(Z), (4)

then

‖ sup
N∈N
|AN;X,T f |‖Lp(X) ≤ Cp‖f‖Lp(X), f ∈ Lp(X). (5)



Proof of the Calderón transference principle
Assume that p ≥ 1. Let J,R ∈ N, f ∈ Lp(X) and define

F(j) =

{
f (T jx) 0 ≤ j ≤ J,
0 otherwise,

For a fixed N ∈ N such that 1 ≤ N ≤ R and every 0 ≤ j ≤ J − R we have

MNF(j) =
1

|B ∩ [0,N]|
∑

k∈B∩[0,N]

F(j + k)

=
1

|B ∩ [0,N]|
∑

k∈B∩[0,N]

f (T j+kx)

= AN;X,T f (T jx).

Thus for 1 ≤ N ≤ R we have

J−R∑
j=0

sup
1≤N≤R

|AN;X,T f (T jx)|p =

J−R∑
j=0

sup
1≤N≤R

|MNF(j)|p ≤
J−R∑
j=0

sup
N∈N
|MNF(j)|p

≤ ‖ sup
N∈N
|MN f |‖p

`p(Z) ≤ Cp
p‖F‖

p
`p(Z) = Cp

p

J∑
j=0

|f (T jx)|p.



Proof of the Calderón transference principle
Thus

J−R∑
j=0

∫
X

sup
1≤N≤R

|AN;X,T f (T jx)|pdµ(x) ≤ Cp
p

J∑
j=0

∫
X
|f (T jx)|pdµ(x).

Integrating both sides of this inequality, we get(
1− R

J

)1/p∥∥ sup
1≤N≤R

|AN;X,T f |
∥∥

Lp(X)
≤ Cp‖f‖Lp(X),

taking J →∞ we obtain∥∥ sup
1≤N≤R

|AN;X,T f |
∥∥

Lp(X)
≤ Cp‖f‖Lp(X),

Finally, taking R→∞ we have∥∥ sup
N∈N
AN;X,T f

∥∥
Lp(X)

≤ Cp‖f‖Lp(X).

The proof of the lemma is completed.



Birkhoff’s ergodic theorem
To establish that for every 1 ≤ p <∞ and every f ∈ Lp(X) there exists
f ∗ ∈ Lp(X) such that

lim
N→∞

AN;X,T f (x) = lim
N→∞

1
N

N∑
n=1

f (Tnx) = f ∗(x) (6)

one can proceed in two steps:
I Step 1. Quantitative version of ergodic theorem

‖ sup
N∈N
|AN;X,T f |‖Lp(X) . ‖ f‖Lp(X) for p ∈ (1,∞]. (7)

µ({x ∈ X : sup
N∈N
|AN;X,T f (x)| > λ}) . λ−1‖ f‖L1(X) for p = 1. (8)

The bounds in (7) follow from the Hardy–Littlewood maximal
inequality∥∥∥ sup

N∈N

∣∣∣ 1
N

N∑
n=1

f (x− n)
∣∣∣∥∥∥
`p(Z)

. ‖ f‖`p(X), for p ∈ (1,∞],

which is AN,Z,S f with X = Z and the shift operator S(x) = x− 1 in (6).

I Step 2. Pointwise convergence on a dense class of functions in Lp(X).



Convergence on a dense class

AN f (x) =
1
N

N∑
n=1

f (Tnx)

I IT =
{

f ∈ L2(X) : f ◦ T = f
}

. If f ∈ IT , then

AN f = f ,

µ-almost everywhere.

I JT =
{

g ◦ T − g : g ∈ L2(X) ∩ L∞(X)
}

. If f ∈ JT , then by telescoping

|AN f (x)| = 1
N

∣∣∣ N∑
n=1

g(Tn+1x)−g(Tnx)
∣∣∣ =

1
N
|g(TN+1x)− g(Tx)| −−−→N→∞ 0.

I IT ⊕ JT is dense in L2(X) by Riesz decomposition.



All together: pointwise convergence in Lp(X)
I Our aim will be to show that for any f ∈ L2(X) one has

µ({x ∈ X : (AN;X,T f (x))N∈N is not a Cauchy sequence}) = 0.

I Since IT ⊕ JT is dense in L2(X) we can find (fn)n∈N ⊂ IT ⊕ JT so that
‖fn − f‖L2(X) −−−→n→∞ 0, and limM,N→∞ |AM;X,T fn(x)− AN;X,T fn(x)| = 0 for
µ almost every x ∈ X.

I Suppose for a contradiction that there is δ > 0 such that

δ < µ({x ∈ X : lim sup
M,N→∞

|AM;X,T f (x)− AN;X,T f (x)| > δ})

≤ µ({x ∈ X : sup
N∈N
|AN;X,T(fn − f )(x)| > δ/2}).

I By the maximal inequality ‖ supN∈N|AN;X,T f |‖L2(X) . ‖ f‖L2(X) and
Chebyshev inequality we obtain a contradiction, since one has

δ < µ({x ∈ X : sup
N∈N
|AN;X,T(fn − f )(x)| > δ/2}) ≤ C2

δ2 ‖fn − f‖2
L2(X)

−−−→n→∞ 0.

I For p 6= 2 we repeat the argument using the fact that L2(X) ∩ Lp(X) is
dense in Lp(X) for any 1 ≤ p <∞.



Bourgain’s pointwise ergodic theorem
In the early 1980’s Bellow and Furstenberg asked independently about the
poinwise convergence for polynomial ergodic averages

AP
N;X,T f (x) :=

1
N

N∑
n=1

f (TP(n)x) for x ∈ X,

where P ∈ Z[n] is a polynomial of degree > 1.

Bourgain used the circle method of Hardy and Littlewood to show:

I Lp(X) boundedness of the maximal function for any 1 < p ≤ ∞, i.e.

‖ sup
N∈N
|AP

N;X,T f |‖Lp(X) . ‖ f‖Lp(X) for p ∈ (1,∞].

I Given an increasing sequence (Nj : j ∈ N), for each J ∈ N one has

( J∑
j=0

∥∥ sup
Nj≤N<Nj+1

∣∣AP
N;X,T f − AP

Nj;X,T f
∣∣∥∥2

L2(X)

)1/2
≤ o(J1/2)‖ f‖L2(X).



Oscillation inequality for Birkhoff’s operators
Recall that

AN;X,T f (x) =
1
N

N∑
n=1

f (Tnx).

Fix τ ∈ (1, 2] and define Λ = {bτ kc : k ∈ N ∪ {0}}. Let (kj)j∈N be an
increasing sequence and set Nj = bτ kjc.

Theorem
Let (X,B(X), µ,T) be a measure-preserving system then for every J ∈ N
there is CJ > 0 such that we have

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣AN;X,T f − ANj;X,T f
∣∣∥∥2

L2(X)
≤ CJ‖f‖2

L2(X), (9)

and limJ→∞ CJ/J = 0. In particular, for every f ∈ L2(X) there exists
f ∗ ∈ L2(X) such that

lim
N→∞

AN;X,T f (x) = f ∗(x),

for µ-almost every x ∈ X.



Proof of the oscillation inequality for Birkhoff’s operators
I Repeating the same argument as in the proof of transference principle it

only suffices to work with (Z,P(Z), | · |, S) with S(x) = x− 1. Then

AN;X,S f (x) = MN f (x) =
1
N

N∑
n=1

f (x− n) = KN ∗ f (x), f ∈ `2(Z),

where

KN(x) =
1
N

N∑
n=1

δn(x), x ∈ Z.

I By the bounds for the Hardy–Littlewood maximal function

‖ sup
N∈N
|MN f |‖`p(Z) . ‖f‖`p(Z)

one can assume that f ∈ `2(Z) ∩ `∞(Z) and f ≥ 0 is finitely supported.
I For f ∈ `1(Z) let us denote by

f̂ (ξ) =
∑
n∈Z

e2πinξf (n),

the discrete Fourier transform on Z and let F−1 be its inverse.



Proof of the oscillation inequality for Birkhoff’s operators

I One can see that M̂N f (ξ) = K̂N(ξ)f̂ (ξ), where

K̂N(ξ) =
1
N

N∑
n=1

e2πinξ.

I Let Bj = {x ∈ (−1/2, 1/2) : |x| ≤ N−1
j }. By Plancherel’s theorem

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bj+1 f̂
)∣∣∥∥2

`2

≤
J∑

j=0

∑
N∈Λ∩(Nj,Nj+1]

∥∥F−1((K̂N − K̂Nj)1Bj+1 f̂
)∥∥2
`2

≤
∥∥∥ J∑

j=0

1Bj+1

∑
N∈Λ∩(Nj,Nj+1]

|K̂N − K̂Nj |2
∥∥∥

L∞
‖f‖2

`2 .



Proof of the oscillation inequality for Birkhoff’s operators
I For N ∈ Λ ∩ (Nj,Nj+1] we have

|K̂N(ξ)− K̂Nj(ξ)| . |ξ|N,

hence

J∑
j=0

1Bj+1(ξ)
∑

N∈Λ∩(Nj,Nj+1]

|K̂N(ξ)− K̂Nj(ξ)|2

. |ξ|2
J∑

j=0

1Bj+1(ξ)
∑

N∈Λ∩(Nj,Nj+1]

N2

. |ξ|2
∑

j:Nj+1≤|ξ|−1

N2
j+1 . 1.

Therefore, we obtain

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bj+1 f̂
)∣∣∥∥2

`2 . ‖f‖2
`2 .



Proof of the oscillation inequality for Birkhoff’s operators

I Similar for Bc
j , replacing K̂Nj by K̂Nj+1 under the supremum, we can

estimate

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bc
j
f̂
)∣∣∥∥2

`2

.
J∑

j=0

∑
N∈Λ∩[Nj,Nj+1]

∥∥F−1((K̂Nj+1 − K̂N)1Bc
j
f̂
)∥∥2
`2

≤
∥∥∥ J∑

j=0

1Bc
j

∑
N∈Λ∩[Nj,Nj+1]

|K̂Nj+1 − K̂N |2
∥∥∥

L∞

∥∥f
∥∥2
`2 .

Now for N ∈ Λ ∩ [Nj,Nj+1] we obtain

|K̂Nj+1(ξ)− K̂N(ξ)| . |ξ|−1N−1



Proof of the oscillation inequality for Birkhoff’s operators

I Thus

J∑
j=0

1Bc
j
(ξ)

∑
N∈Λ∩[Nj,Nj+1]

|K̂Nj+1(ξ)− K̂N(ξ)|2

. |ξ|−2
J∑

j=0

1Bc
j
(ξ)

∑
N∈Λ∩[Nj,Nj+1]

N−2

. |ξ|−2
∑

j:Nj≥|ξ|−1

N−2
j . 1.

Therefore, we conclude

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bc
j
f̂
)∣∣∥∥2

`2 . ‖f‖2
`2 .



Proof of the oscillation inequality for Birkhoff’s operators

I Finally, for p = 2 we obtain

J∑
j=0

∥∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bj1Bc
j+1

f̂
)∣∣∥∥∥2

`2

.
J∑

j=0

∥∥F−1(1Bj1Bc
j+1

f̂
)
‖2
`2 ≤ ‖f‖2

`2 .

I Hence

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣AN;X,T f − ANj;X,T f
∣∣∥∥2

L2(X)
≤ CJ‖f‖2

L2(X),

I In fact we have proved that CJ is constant. The proof of (9) is
completed.



How oscillations imply pointwise convergence
I By the maximal inequality for p = 2 we can assume that f ∈ L2(X) is

bounded and ‖f‖L∞(X) ≤ 1.
I Suppose for a contradiction that (AN;X,T f (x))N∈N does not converge.

Then there is ε ∈ (0, 1) such that

µ
(
{x ∈ X : lim sup

M,N→∞
|AM;X,T f (x)− AN;X,T f (x)| > 8ε}

)
> 8ε.

I Thus there exists (kj)j∈N such that

µ
(
{x ∈ X : sup

Nj<N≤Nj+1

|AN;X,T f (x)− ANj;X,T f (x)| > 4ε}
)
> 4ε,

where Nj = bτ kjc and τ = 1 + ε/4.
I If bτ kc ≤ N < bτ k+1c then

|AN;X,T f − Abτ kc;X,T f | =
∣∣∣∣ 1
N

N∑
n=bτ kc+1

f (Tnx)− N − bτ kc
Nbτ kc

bτ kc∑
n=1

f (Tnx)

∣∣∣∣
≤ 2(N − bτ kc)

N
≤ 4τ k(τ − 1)

τ k +
4
τ k = 4(τ − 1) +

4
τ k < 2ε,

for k ≥ k0, since we can always arrange k0 to satisfy τ−k0 < ε/4.



How oscillations imply pointwise convergence

I Therefore, we obtain that

µ
(
{x ∈ X : sup

N∈Λ∩(Nj,Nj+1]

|AN;X,T f (x)− ANj;X,T f (x)| > ε}
)
> ε.

I Now applying oscillation inequality we obtain that

0 < ε3 ≤ 1
J

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣AN;X,T f − ANj;X,T f
∣∣∥∥2

L2(X)
≤ J−1CJ‖f‖2

L2(X),

but it is impossible since, the right-hand side tends to 0 as J →∞.
I This proves the pointwise convergence of AN;X,T f on L2(X) and

completes the proof.



Dziękuję!


