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Bourgain’s pointwise ergodic theorem

In the early 1980’s Bellow and Furstenberg asked independently about the
poinwise convergence for polynomial ergodic averages
|
AJI\),;Xny(x) =5 Zf(TP(")x) for xeX,

n=1
where P € Z[n] is a polynomial of degree > 1.

Bourgain used the circle method of Hardy and Littlewood to show:

» [P(X) boundedness of the maximal function for any 1 < p < o0, i.e.

| ;IGIIR)IMZ;X,TJC‘ xS Hf”u(x) for p e (1,00].

» Given an increasing sequence (N; : j € N), for each J € N one has

1/2
(Z H bup NX f = AQ;X,Tf‘ H;(x)) < 0(‘]1/2)||f“L2(X)~

N;<N<N,



Bourgain’s maximal ergodic theorem for My = A%, ¢
» We prove that
|| sup M5 flllez) S Ifllez)-
neN

To simplify arguments assume that P(x) = x4 and d > 2.
> Let

N
1
Ky(x) = N Z Sp(k) (%),
k=1

then
Myf(x) = Ky *f(x).
» Forf € ('(Z) let
F&) = & (k)

kezZ
and observe that

N
() = Ru(€) = 1 - (e eT).
k=1

> Consequently
MRf(x) = Ky f(x) = F~" (mnf) ().



Some heuristics

» First of all we have to understand the behaviour of
() = L 30 e
v&) =y 2 )
and we would like to replace my (&) with the integral

1
@N(f)z/ 2miEND gy
0

» We can not do this naively, since the derivative of the phase function
k¢ arising in the exponential sum is equal to dk?~'¢ and may be large.

» In general we have no control over the error term

my(§) — Py (§).



Gaussian sums

» If{ =a/qand (a,q) = 1 then we see that my(a/q) behaves like a
complete Gaussian sum

1 ! Trt“rd
Gla/q) = ;Z e
r=1

» Indeed,

my(a/q) = Z 2midk! Z Z 27ri§(qk+r)” Z 2midr "'

=l _ <k<N

» This suggests that the asymptotics for my should be concentrated in
some neighbourhoods of Diophantine approximations of £ with small
denominators.



Small denominators - asymptotic formula for my(§)

» From Dirichlet’s principle for any ¢ € [0, 1] and we can always find
a/q € [0,1)suchthat 1 < g <N, (a,q)=1and

1
~ gNi=h
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forany > 0. If 1 < g < NP then

Z Z 27ri(§7§)(qn+r)d627ri§(qn+r)d
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» Therefore, if £ is in the neighbourhood of a/q as above, we have

my () = Gla/q) - on(€ — a/q) + O(NT'/?).



Large denominators - Weyl’s inequality
» It was observed by Hardy and Littlewood that if
€ —a/q| < qN(%B < g ?and (a,q) = 1and N% < g < N%~P then

N

(@) = | 1 3 i

k=1

SN

for some « € (0, 1). This follows from Weyl’s inequality.
Lemma (Weyl’s inequality)

Let P(x) = agx? + ... + ayx. Suppose there are (a,q) = 1 such that
lag — a/q| < q~2. Then there is C > 0 such that

1 N 2iP(m) 5 1 1 q 1/2‘171

- e < ClogN) | — 4+ =+ —

Nﬂ;e < C(log )(q+N+Nd>
uniformly in N and q.

» Observe also that for some § > 0 we have
q

1 midrd
Glafa)l = | 1Y e

r=1
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Projections =5« (&)

» For e, x > 0 let us define the following projections

Ev@ = Y, aN“I(E—a/q))

a/qER <ne
with a smooth cuf-off function 7 and

A<y ={a/geT: (a,q)=1and 1 < q < N}.

» Since

Mo (§) = man (§)(1 — Exn(§)) + man (§)Z (),

the first term is highly oscillatory, as supported in the regime where
Weyl’s inequality is efficient.

» The second term provides asymptotic and will be approximated by the
integral

1
Pn(E) :/0 AmIEN g



Highly oscillatory part: ma: (1 — =)

» From Weyl’s inequality we have

n

2
% Z eZwi{kd‘ S p—an
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Iman (§)] =

for a large o > 0, provided that 1 — Z.(&) # 0.
» Therefore, by Plancherel’s theorem

Jsupl! (1~ 22 < 3 7
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Asymptotic part: miyn=n

» Recall that if a/q € F<;-» then we have

(€)= Gla/g) ¥ (€-a/0) = Z) (/ | e )
2 = q) P2 q . | .

r=1

» Therefore,

I’I’lzn uzn E mzn

s>0

where

my (€)= Y Gla/q)®x(—a/gm(2“ (& - a/q)),

a/qERas

with Z» = {a/q € T: (a,q) = 1and 2*~! < g < 2°}.

» The task now is to show that for any s > 0 we have
| sup F T mf )| S 275 W les  f € £(2),

where § > 0 comes from the estimate |G(a/q)| < ¢~°.



The case n > 275

» We split the supremum into two parts 0 < n < 2% and n > 2" for
some x € N to be specified later.

[lsup |77 (msh |2 < | s1p 177 (m3f)

+ || sup |f71(m§nf)|||ez.
0<n<2ns

» For the first term we show that
| sup 177 () ]

<27%  sup
”gHLZ(R):l

sup |[R™! /Rg(x— td)dt‘
0

R>0

Fllez),
L*(R)

which by the Hardy-Littlewood maximal theorem for p € (1, 00) one
can conclude that

S gl ®)-

R
sup Ril/ g(x—td)dt‘
0 »(R)

R>0




The case 0 < n <278

Rademacher—Menshov inequality
For any sequence (g;j)o<j<>s € C and any s € N we have

s 271 1/2
021152 lan] < |ao| + \62 ( Z lag+1y2 — aj2[|2>

i=0 N\ j=0

» Hence by Plancherel’s theorem we obtain
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The case 0 < n <278
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Finally we obtain
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L? good and bad sequences

Theorem (Bourgain’s ergodic theorem, (1989))
Let (X, B(X), u, T) be a o-finite measure preserving system. For every
1 <p<ooand P € Zln] and f € [P(X) there exists f* € LF(X) such that

N

SOTAION)  £).

n=1

» This theorem gives a positive answer to Bellow and Furstenberg
problem, and inspired many authors to investigate the averages
N

AGF() = 4 D F(T)

n=1

defined along sequences (a,),en C Z. We will say that

» (ay)nen is LP-good if the pointwise convergence of Ay f(x) holds for
every dynamical system (X, B(X), u, T) and every f € LP(X).

» Otherwise (a,)nen is LP-bad.



Examples
» a, =nis [P-goodforp > 1,
— Birkhoff ergodic theorem (1931).

» a, = P(n) is L-good for p > 1, where P € Z[n],
— Bourgain (1989).

» a, = n-th prime number, is L”-good forp > 1,
— Bourgain/Wierdl (1989).

The question about the endpoint estimates p = 1 was a major open problem
in pointwise ergodic theory that led to a remarkable conjecture:

Conjecture (Rosenblatt & Wierdl (1991))

There are no sequences (an)nen C N, with gaps tending to infinity, i.e.

nliglo(an—&-l - an) = 00,

which are L'-good.



Examples
Meanwhile, L? theory (for p > 1) has been developed, and it was shown
» a, = |h(n)] is LP-good for p > 1,
— Boshernitzan, Kolesnik, Quas & Wierdl (2005), where

h(x) = x°log" x,
h(x) ceAlog x
h(x) = x“log log .log x,

withe > 1,A€ R, B € (0,1).

» a, = |n°] is L'-good for 1 < ¢ < 1.001,
— Urban & Zienkiewicz (2007).
This gives a negative answer to Rosenblatt and Wierdl’s conjecture.

» g, =nkis L'-bad
— for k = 2, Buczolich & Mauldin (2010),
— for k > 2, LaVictoire (2011).

» a, = n-th prime number, is L'-bad
— LaVictoire (2011).



Other L' good sequences

Theorem (M. (2013))
Assume that 1 < ¢ < 30/29 ~ 1.0345, and let h be a function of the form

h(n) = n° L(n),

where L(n) is a slowly varying function (satisfying certain smoothness
conditions). Then the sequence

a, = |h(n)| isL'-good.

In particular, there is a constant C > 0 such that for any o-finite measure
preserving system (X, B(X), u, T) we have

RO c
p(frex: sup |5 A )| >A}) < S/l

forevery A > 0 and f € L' (X).



Bergelson—Richter prime number theorem

Let 2(n) denote the number of prime factors of a natural number n € N
counted with multiplicities.

Theorem (Bergelson—Richter theorem (2020))
Let (X, u, T) be uniquely ergodic topological system. Then

N A8 g [ 0)nt)

for every every x € X and f € C(X). In particular, for every o € R\ Q the
sequence ({a)(n)})nen is equidistributed.

Surprisingly, unique ergodicity and continuity are essential, as we have that

Theorem (Loyd’s theorem (2023))

For any non-atomic ergodic probability measure preserving system
(X, B(X), u, T) there exists a measurable set A € B(X) such that

liminf — Z Ta( T ) = and limsup — Z Ta( Q(k)x) =1,

N—oo
N—o0 k 1

for almost all x € X.



Oscillation inequality for Birkhoff’s operators

Recall that
N

Avixaf () = 3 YS(T)

n=1
Fix 7 € (1,2] and define A = {|7¥] : k € NU {0}}. Let (k;);en be an

increasing sequence and set N; = [7%].

Theorem
Let (X, B(X), u, T) be a measure-preserving system then for every J € N

there is C; > 0 such that we have
J

Sl sw fAvaf = Ayt |l < Ol I, O
=0 NEANWN;Ni+1]

and lim;_, o, C;/J = 0. In particular, for every f € L*(X) there exists
f* € L*(X) such that

NILHDIOAN;X,Tf(x) =f"(x),

for p-almost every x € X.



Proof of the oscillation inequality for Birkhoff’s operators

» Repeating the same argument as in the proof of transference principle it
only suffices to work with (Z,P(Z), | - |, S) with S(x) = x — 1. Then
N
1 2
Avsf() = Myf(x) = & > flx—n) =Ky f(x),  f€L(Z),

n=1

where
| &
Kn(x) = & ; S(x), x€Z
» By the bounds for the Hardy-Littlewood maximal function

| sup |Mufllerz) S Wfller(z)
NeN

one can assume that f € ¢2(Z) N ¢>°(Z) and f > 0 is finitely supported.
» For f € ('(Z) let us denote by

F©) =3 (n),

ne”z

the discrete Fourier transform on Z and let F~! be its inverse.



Proof of the oscillation inequality for Birkhoff’s operators

> One can see that Myf(£) = Ky(€)F (€), where
L
2 § 27in,
KN(g):Nn:1€ 5

> LetBj={xe (—1/2,1/2): x| < Nj_l}. By Plancherel’s theorem

J

ZH sup |f71((kN_kM)]lBj+1f)|H§2

=0 NEAN®;Nj]

J
< Z Z H]:il( KN *KN ]13+1f)||£2

J=0 NEAN(N;,Nj11]

J
= H Z]le Z Ky — KN/'FHLMWH%Z'
j=0

NEAN(N;Njt1]



Proof of the oscillation inequality for Birkhoff’s operators
» For N € AN (Nj,Nj11] we have

[Kn () — K, ()] S IEIN,

hence

Dolga©) Y K& - K (©)P
j=0

NEAN(N;,Nj41]

J
SEPY 1s,,0 D>, N
j=0

NeAN(N;,Nj1]
2
< [l Z N S
JN <[E!
Therefore, we obtain

J

Z H sup |f_1((kN - f(N/ +1f ’ng ~ “f”ez

=0 NEAN®;Njt]



Proof of the oscillation inequality for Birkhoff’s operators

> Similar for B}, replacing kNj by f(Nj ., under the supremum, we can
estimate

J

SO sup  |FT (R — ) Lg) [

=0 NEANN;Nj1i]

J
S Z Z H]:_] ((IA(NHI - kN)ﬂBff) ‘iz

J=0 NEAN[N;,Njt1]

J
T N
j=0

NEAN[N;Nj1]

Now for N € A N[N, Nj;.1] we obtain

|f(N/+1(§) _IA(N(f)l 5 |€|_1N_1



Proof of the oscillation inequality for Birkhoff’s operators

» Thus

Doup©) Y K () - Kn(©OF
j=0

NEAN(N;,Njt1]

J
S |§|72213;(§) Z N2
j=0 NEAN(N;,Njt1]
Sk Y NS
N> [€1!

Therefore, we conclude

J

Z sup | F ' ((Ky _f(Nj)]lef)‘Hiz Sl
—0 NEAN(N;,Nj11]



Proof of the oscillation inequality for Birkhoff’s operators

» Finally, for p = 2 we obtain

R R 2
H sup |7~ ((Ky — KN,')]IB,']IB,‘-;]JC”

=0 | NEANN;Nj11]

52
J A~
S NF (s, HIE < I3
j=0

» Hence

J
Z H NEAri?NpN ] |AN;X’Tf 7ANJ'?X7Tf|HiZ(x) S CJ“inZ(X),
Jj=0 /jsNj+1

» In fact we have proved that C; is constant. The proof of (1) is
completed.



How oscillations imply pointwise convergence

» By the maximal inequality for p = 2 we can assume that f € L*(X) is
bounded and ||f ||, x) < 1.

» Suppose for a contradiction that (Ay.x 71 (x))ven does not converge.
Then there is € € (0, 1) such that

p({reX: Bm sup |Apx,rf (x) — Ansx,of (x)] > 8¢}) > 8e.

N—oo

» Thus there exists (k;)jen such that

p{xeX: sup |Anxaf(x) — Anxrf(x)] > 4e}) > 4e,
N;<N<Njt1

where N; = |75 ] and 7 = 1 + £/4.
> If 75| < N < |7%*!] then

R~ N
‘AN;X,Tf _Al_TkJ;X,Tf| =% Z f(Tnx) - k Zf(Tnx)
N n=|7*]+1 NS
2N —|7F])  47k(r—1) 4
< < —
>~ N — Tk + 7-k

for k > ko, since we can always arrange ko to satisfy 7% < ¢/4.

4
=41 — 1)+ — <2,
T



How oscillations imply pointwise convergence

» Therefore, we obtain that

p({xeX: sup  |Ayxrf(x) —Anxof(x)] > e}) > e
NEAN(N;,Nj+1]

» Now applying oscillation inequality we obtain that

J

1 2 _
0 < 53 S sup |AN;X,Tf _AI\//;X,Tf‘ HLZ(X) S J ICJHf”iZ(Xy

=0 H NEAN(N;,Njt1]

~

but it is impossible since, the right-hand side tends to 0 as J — oo.

> This proves the pointwise convergence of Ay.x 7f on L*(X) and
completes the proof.



Dzigkuje!



