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Bourgain’s pointwise ergodic theorem
In the early 1980’s Bellow and Furstenberg asked independently about the
poinwise convergence for polynomial ergodic averages

AP
N;X,T f (x) :=

1
N

N∑
n=1

f (TP(n)x) for x ∈ X,

where P ∈ Z[n] is a polynomial of degree > 1.

Bourgain used the circle method of Hardy and Littlewood to show:

I Lp(X) boundedness of the maximal function for any 1 < p ≤ ∞, i.e.

‖ sup
N∈N
|AP

N;X,T f |‖Lp(X) . ‖ f‖Lp(X) for p ∈ (1,∞].

I Given an increasing sequence (Nj : j ∈ N), for each J ∈ N one has

( J∑
j=0

∥∥ sup
Nj≤N<Nj+1

∣∣AP
N;X,T f − AP

Nj;X,T f
∣∣∥∥2

L2(X)

)1/2
≤ o(J1/2)‖ f‖L2(X).



Bourgain’s maximal ergodic theorem for MP
N = AP

N;Z,S
I We prove that ∥∥ sup

n∈N
|MP

2n f |‖`2(Z) . ‖f‖`2(Z).

To simplify arguments assume that P(x) = xd and d ≥ 2.
I Let

KN(x) =
1
N

N∑
k=1

δP(k)(x),

then
MP

N f (x) = KN ∗ f (x).

I For f ∈ `1(Z) let
f̂ (ξ) =

∑
k∈Z

e2πiξkf (k)

and observe that

mN(ξ) = K̂N(ξ) =
1
N

N∑
k=1

e2πiξkd
(ξ ∈ T).

I Consequently

MP
N f (x) = KN ∗ f (x) = F−1(mN f̂

)
(x).



Some heuristics

I First of all we have to understand the behaviour of

mN(ξ) =
1
N

N∑
k=1

e2πiξkd
,

and we would like to replace mN(ξ) with the integral

ΦN(ξ) =

∫ 1

0
e2πiξ(Nx)d

dx.

I We can not do this naively, since the derivative of the phase function
kdξ arising in the exponential sum is equal to dkd−1ξ and may be large.

I In general we have no control over the error term

mN(ξ)− ΦN(ξ).



Gaussian sums

I If ξ = a/q and (a, q) = 1 then we see that mN(a/q) behaves like a
complete Gaussian sum

G(a/q) =
1
q

q∑
r=1

e2πi a
q rd

.

I Indeed,

mN(a/q) =
1
N

N∑
k=1

e2πi a
q kd

=
1
N

q∑
r=1

∑
− r

q<k≤ N−r
q

e2πi a
q (qk+r)d

' 1
q

q∑
r=1

e2πi a
q rd

.

I This suggests that the asymptotics for mN should be concentrated in
some neighbourhoods of Diophantine approximations of ξ with small
denominators.



Small denominators - asymptotic formula for mN(ξ)
I From Dirichlet’s principle for any ξ ∈ [0, 1] and we can always find

a/q ∈ [0, 1) such that 1 ≤ q ≤ Nd−β , (a, q) = 1 and∣∣∣∣ξ − a
q

∣∣∣∣ ≤ 1
qNd−β

for any β > 0. If 1 ≤ q ≤ Nβ then

mN(ξ) =
1
N

N∑
k=1

e2πiξ·kd
=

1
N

q∑
r=1

∑
− r

q<n≤ N−r
q

e2πi(ξ− a
q )(qn+r)d

e2πi a
q (qn+r)d

=
1

qN

q∑
r=1

e2πi a
q rd

· q
N

∑
− r

q<n≤ N−r
q

e2πi(ξ− a
q )(qn+r)d

=

(
1
q

q∑
r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)

+O(N−1/2).

I Therefore, if ξ is in the neighbourhood of a/q as above, we have

mN(ξ) = G(a/q) · ΦN(ξ − a/q) +O(N−1/2).



Large denominators - Weyl’s inequality
I It was observed by Hardy and Littlewood that if
|ξ − a/q| ≤ 1

qNd−β ≤ q−2 and (a, q) = 1 and Nβ ≤ q ≤ Nd−β then

|mN(ξ)| =
∣∣∣ 1
N

N∑
k=1

e2πiξkd
∣∣∣ . N−α

for some α ∈ (0, 1). This follows from Weyl’s inequality.

Lemma (Weyl’s inequality)
Let P(x) = adxd + . . .+ a1x. Suppose there are (a, q) = 1 such that
|ad − a/q| ≤ q−2. Then there is C > 0 such that

1
N

∣∣∣∣ N∑
m=1

e2πiP(m)

∣∣∣∣ ≤ C(log N)2
(

1
q

+
1
N

+
q

Nd

)1/2d−1

uniformly in N and q.
I Observe also that for some δ > 0 we have

|G(a/q)| =
∣∣∣∣1q

q∑
r=1

e2πi a
q rd
∣∣∣∣ . q−δ.



Projections Ξ2n(ξ)

I For ε, χ > 0 let us define the following projections

ΞN(ξ) =
∑

a/q∈R≤Nε

η(N(d−χ)(ξ − a/q))

with a smooth cuf-off function η and

R≤N = {a/q ∈ T : (a, q) = 1 and 1 ≤ q ≤ N}.

I Since
m2n(ξ) = m2n(ξ)(1− Ξ2n(ξ)) + m2n(ξ)Ξ2n(ξ),

the first term is highly oscillatory, as supported in the regime where
Weyl’s inequality is efficient.

I The second term provides asymptotic and will be approximated by the
integral

ΦN(ξ) =

∫ 1

0
e2πiξ(Nx)d

dx.



Highly oscillatory part: m2n(1− Ξ2n)

I From Weyl’s inequality we have

|m2n(ξ)| =
∣∣∣ 1
2n

2n∑
k=1

e2πiξkd
∣∣∣ . 2−αn

for a large α > 0, provided that 1− Ξ2n(ξ) 6= 0.
I Therefore, by Plancherel’s theorem∥∥ sup

n∈N
|F−1(m2n(1− Ξ2n)f̂

)
|
∥∥
`2 ≤

∑
n∈N0

∥∥F−1(m2n(1− Ξ2n)f̂
)∥∥
`2

.
∑
n∈N0

2−αn‖f‖`2

. ‖f‖`2 .



Asymptotic part: m2nΞ2n

I Recall that if a/q ∈ R≤2εn then we have

m2n(ξ) ' G(a/q)·Φ2n(ξ−a/q) =

(
1
q

q∑
r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(2nx)d

dx
)
.

I Therefore,
m2n(ξ)Ξ2n(ξ) '

∑
s≥0

ms
2n(ξ)

where

ms
2n(ξ) =

∑
a/q∈R2s

G(a/q)Φ2n(ξ − a/q)η
(
2s(d−χ)(ξ − a/q)

)
,

with R2s = {a/q ∈ T : (a, q) = 1 and 2s−1 < q ≤ 2s}.
I The task now is to show that for any s ≥ 0 we have∥∥ sup

n∈N
|F−1(ms

2n f̂
)
|
∥∥
`2 . 2−δs‖f‖`2 , f ∈ `2(Z),

where δ > 0 comes from the estimate |G(a/q)| . q−δ .



The case n ≥ 2κs

I We split the supremum into two parts 0 ≤ n ≤ 2κs and n ≥ 2κs for
some κ ∈ N to be specified later.∥∥ sup

n∈N
|F−1(ms

2n f̂
)
|
∥∥
`2 ≤

∥∥ sup
n≥2κs

|F−1(ms
2n f̂
)
|
∥∥
`2

+
∥∥ sup

0≤n≤2κs
|F−1(ms

2n f̂
)
|
∥∥
`2 .

I For the first term we show that∥∥ sup
n≥2κs

|F−1(ms
2n f̂
)
|
∥∥
`2

. 2−δs sup
‖g‖L2(R)=1

∥∥∥∥ sup
R>0

∣∣∣R−1
∫ R

0
g(x− td)dt

∣∣∣∥∥∥∥
L2(R)

‖f‖`2(Z),

which by the Hardy–Littlewood maximal theorem for p ∈ (1,∞) one
can conclude that∥∥∥∥ sup

R>0

∣∣∣R−1
∫ R

0
g(x− td)dt

∣∣∣∥∥∥∥
Lp(R)

. ‖g‖Lp(R).



The case 0 ≤ n ≤ 2κs

Rademacher–Menshov inequality
For any sequence (aj)0≤j≤2s ⊆ C and any s ∈ N we have

sup
0≤n≤2s

|an| ≤ |a0|+
√

2
s∑

i=0

( 2s−i−1∑
j=0

|a(j+1)2i − aj2i |2
)1/2

I Hence by Plancherel’s theorem we obtain∥∥ sup
0≤n≤2κs

|F−1(ms
2n f̂
)
|
∥∥
`2

.

∥∥∥∥ κs∑
i=0

( 2κs−i−1∑
j=0

( (j+1)2i−1∑
k=j2i

F−1((ms
2k+1 − ms

2k )f̂
))2
)1/2∥∥∥∥

`2

.
κs∑

i=0

( 2κs−i−1∑
j=0

∥∥∥ (j+1)2i−1∑
k=j2i

(ms
2k+1 − ms

2k )f̂
∥∥∥2

L2

)1/2

.



The case 0 ≤ n ≤ 2κs

∥∥ sup
0≤n≤2κs

|F−1(m2n f̂
)
|
∥∥
`2 .

κs∑
i=0

( 2κs−i−1∑
j=0

∥∥∥ (j+1)2i−1∑
k=j2i

(ms
2k+1 − ms

2k )f̂
∥∥∥2

L2

)1/2

.
κs∑

l=0

( 2κs−l−1∑
j=0

∑
j2l≤k,k′<(j+1)2l

∫
T
|ms

2k+1(ξ)− ms
2k (ξ)||ms

2k′+1(ξ)− ms
2k′ (ξ)||̂f (ξ)|2dξ

)1/2

. s
( ∑

a/q∈R2s

|G(a/q)|2
∫
T
|̂f (ξ)|2η

(
2s(d−χ)(ξ − a/q)

)2dξ
)1/2

since ∑
j∈Z
|Φ2j+1(ξ)− Φ2j(ξ)| .

∑
j∈Z

min
{
|2jξ|, |2jξ|−1/d} . 1.

Finally we obtain ∥∥ sup
0≤n≤2κs

|F−1(ms
2n f̂
)
|
∥∥
`2 . s2−δs‖f‖`2 .



Lp good and bad sequences
Theorem (Bourgain’s ergodic theorem, (1989))
Let (X,B(X), µ,T) be a σ-finite measure preserving system. For every
1 < p <∞ and P ∈ Z[n] and f ∈ Lp(X) there exists f ∗ ∈ Lp(X) such that

1
N

N∑
n=1

f (TP(n)x) −−−→N→∞ f ∗(x).

I This theorem gives a positive answer to Bellow and Furstenberg
problem, and inspired many authors to investigate the averages

Aan
N f (x) =

1
N

N∑
n=1

f (Tan x)

defined along sequences (an)n∈N ⊂ Z. We will say that

I (an)n∈N is Lp-good if the pointwise convergence of Aan
N f (x) holds for

every dynamical system (X,B(X), µ,T) and every f ∈ Lp(X).

I Otherwise (an)n∈N is Lp-bad.



Examples

I an = n is Lp-good for p ≥ 1,
– Birkhoff ergodic theorem (1931).

I an = P(n) is Lp-good for p > 1, where P ∈ Z[n],
– Bourgain (1989).

I an = n-th prime number, is Lp-good for p > 1,
– Bourgain/Wierdl (1989).

The question about the endpoint estimates p = 1 was a major open problem
in pointwise ergodic theory that led to a remarkable conjecture:

Conjecture (Rosenblatt & Wierdl (1991))
There are no sequences (an)n∈N ⊆ N, with gaps tending to infinity, i.e.

lim
n→∞

(an+1 − an) =∞,

which are L1-good.



Examples
Meanwhile, Lp theory (for p > 1) has been developed, and it was shown
I an = bh(n)c is Lp-good for p > 1,

– Boshernitzan, Kolesnik, Quas & Wierdl (2005), where

h(x) = xc logA x,

h(x) = xceA logB x,

h(x) = xc log log . . . log x,

with c ≥ 1, A ∈ R, B ∈ (0, 1).

I an = bncc is L1-good for 1 < c < 1.001,
– Urban & Zienkiewicz (2007).
This gives a negative answer to Rosenblatt and Wierdl’s conjecture.

I an = nk is L1-bad
– for k = 2, Buczolich & Mauldin (2010),
– for k ≥ 2, LaVictoire (2011).

I an = n-th prime number, is L1-bad
– LaVictoire (2011).



Other L1 good sequences

Theorem (M. (2013))
Assume that 1 < c < 30/29 ' 1.0345, and let h be a function of the form

h(n) = nc L(n),

where L(n) is a slowly varying function (satisfying certain smoothness
conditions). Then the sequence

an = bh(n)c is L1-good.

In particular, there is a constant C > 0 such that for any σ-finite measure
preserving system (X,B(X), µ,T) we have

µ
({

x ∈ X : sup
N∈N

∣∣∣ 1
N

N∑
n=1

f (Tan x)
∣∣∣ > λ

})
<

C
λ
‖ f‖L1(X)

for every λ > 0 and f ∈ L1(X).



Bergelson–Richter prime number theorem
Let Ω(n) denote the number of prime factors of a natural number n ∈ N
counted with multiplicities.

Theorem (Bergelson–Richter theorem (2020))
Let (X, µ,T) be uniquely ergodic topological system. Then

1
N

N∑
k=1

f (TΩ(k)x) −−−→N→∞

∫
X

f (y)dµ(y),

for every every x ∈ X and f ∈ C(X). In particular, for every α ∈ R \Q the
sequence ({αΩ(n)})n∈N is equidistributed.

Surprisingly, unique ergodicity and continuity are essential, as we have that

Theorem (Loyd’s theorem (2023))
For any non-atomic ergodic probability measure preserving system
(X,B(X), µ,T) there exists a measurable set A ∈ B(X) such that

lim inf
N→∞

1
N

N∑
k=1

1A(TΩ(k)x) = 0 and lim sup
N→∞

1
N

N∑
k=1

1A(TΩ(k)x) = 1,

for almost all x ∈ X.



Oscillation inequality for Birkhoff’s operators
Recall that

AN;X,T f (x) =
1
N

N∑
n=1

f (Tnx).

Fix τ ∈ (1, 2] and define Λ = {bτ kc : k ∈ N ∪ {0}}. Let (kj)j∈N be an
increasing sequence and set Nj = bτ kjc.

Theorem
Let (X,B(X), µ,T) be a measure-preserving system then for every J ∈ N
there is CJ > 0 such that we have

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣AN;X,T f − ANj;X,T f
∣∣∥∥2

L2(X)
≤ CJ‖f‖2

L2(X), (1)

and limJ→∞ CJ/J = 0. In particular, for every f ∈ L2(X) there exists
f ∗ ∈ L2(X) such that

lim
N→∞

AN;X,T f (x) = f ∗(x),

for µ-almost every x ∈ X.



Proof of the oscillation inequality for Birkhoff’s operators
I Repeating the same argument as in the proof of transference principle it

only suffices to work with (Z,P(Z), | · |, S) with S(x) = x− 1. Then

AN;X,S f (x) = MN f (x) =
1
N

N∑
n=1

f (x− n) = KN ∗ f (x), f ∈ `2(Z),

where

KN(x) =
1
N

N∑
n=1

δn(x), x ∈ Z.

I By the bounds for the Hardy–Littlewood maximal function

‖ sup
N∈N
|MN f |‖`p(Z) . ‖f‖`p(Z)

one can assume that f ∈ `2(Z) ∩ `∞(Z) and f ≥ 0 is finitely supported.
I For f ∈ `1(Z) let us denote by

f̂ (ξ) =
∑
n∈Z

e2πinξf (n),

the discrete Fourier transform on Z and let F−1 be its inverse.



Proof of the oscillation inequality for Birkhoff’s operators

I One can see that M̂N f (ξ) = K̂N(ξ)f̂ (ξ), where

K̂N(ξ) =
1
N

N∑
n=1

e2πinξ.

I Let Bj = {x ∈ (−1/2, 1/2) : |x| ≤ N−1
j }. By Plancherel’s theorem

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bj+1 f̂
)∣∣∥∥2

`2

≤
J∑

j=0

∑
N∈Λ∩(Nj,Nj+1]

∥∥F−1((K̂N − K̂Nj)1Bj+1 f̂
)∥∥2
`2

≤
∥∥∥ J∑

j=0

1Bj+1

∑
N∈Λ∩(Nj,Nj+1]

|K̂N − K̂Nj |2
∥∥∥

L∞
‖f‖2

`2 .



Proof of the oscillation inequality for Birkhoff’s operators
I For N ∈ Λ ∩ (Nj,Nj+1] we have

|K̂N(ξ)− K̂Nj(ξ)| . |ξ|N,

hence

J∑
j=0

1Bj+1(ξ)
∑

N∈Λ∩(Nj,Nj+1]

|K̂N(ξ)− K̂Nj(ξ)|2

. |ξ|2
J∑

j=0

1Bj+1(ξ)
∑

N∈Λ∩(Nj,Nj+1]

N2

. |ξ|2
∑

j:Nj+1≤|ξ|−1

N2
j+1 . 1.

Therefore, we obtain

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bj+1 f̂
)∣∣∥∥2

`2 . ‖f‖2
`2 .



Proof of the oscillation inequality for Birkhoff’s operators

I Similar for Bc
j , replacing K̂Nj by K̂Nj+1 under the supremum, we can

estimate

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bc
j
f̂
)∣∣∥∥2

`2

.
J∑

j=0

∑
N∈Λ∩[Nj,Nj+1]

∥∥F−1((K̂Nj+1 − K̂N)1Bc
j
f̂
)∥∥2
`2

≤
∥∥∥ J∑

j=0

1Bc
j

∑
N∈Λ∩[Nj,Nj+1]

|K̂Nj+1 − K̂N |2
∥∥∥

L∞

∥∥f
∥∥2
`2 .

Now for N ∈ Λ ∩ [Nj,Nj+1] we obtain

|K̂Nj+1(ξ)− K̂N(ξ)| . |ξ|−1N−1



Proof of the oscillation inequality for Birkhoff’s operators

I Thus

J∑
j=0

1Bc
j
(ξ)

∑
N∈Λ∩[Nj,Nj+1]

|K̂Nj+1(ξ)− K̂N(ξ)|2

. |ξ|−2
J∑

j=0

1Bc
j
(ξ)

∑
N∈Λ∩[Nj,Nj+1]

N−2

. |ξ|−2
∑

j:Nj≥|ξ|−1

N−2
j . 1.

Therefore, we conclude

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bc
j
f̂
)∣∣∥∥2

`2 . ‖f‖2
`2 .



Proof of the oscillation inequality for Birkhoff’s operators

I Finally, for p = 2 we obtain

J∑
j=0

∥∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣F−1((K̂N − K̂Nj)1Bj1Bc
j+1

f̂
)∣∣∥∥∥2

`2

.
J∑

j=0

∥∥F−1(1Bj1Bc
j+1

f̂
)
‖2
`2 ≤ ‖f‖2

`2 .

I Hence

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣AN;X,T f − ANj;X,T f
∣∣∥∥2

L2(X)
≤ CJ‖f‖2

L2(X),

I In fact we have proved that CJ is constant. The proof of (1) is
completed.



How oscillations imply pointwise convergence
I By the maximal inequality for p = 2 we can assume that f ∈ L2(X) is

bounded and ‖f‖L∞(X) ≤ 1.
I Suppose for a contradiction that (AN;X,T f (x))N∈N does not converge.

Then there is ε ∈ (0, 1) such that

µ
(
{x ∈ X : lim sup

M,N→∞
|AM;X,T f (x)− AN;X,T f (x)| > 8ε}

)
> 8ε.

I Thus there exists (kj)j∈N such that

µ
(
{x ∈ X : sup

Nj<N≤Nj+1

|AN;X,T f (x)− ANj;X,T f (x)| > 4ε}
)
> 4ε,

where Nj = bτ kjc and τ = 1 + ε/4.
I If bτ kc ≤ N < bτ k+1c then

|AN;X,T f − Abτ kc;X,T f | =
∣∣∣∣ 1
N

N∑
n=bτ kc+1

f (Tnx)− N − bτ kc
Nbτ kc

bτ kc∑
n=1

f (Tnx)

∣∣∣∣
≤ 2(N − bτ kc)

N
≤ 4τ k(τ − 1)

τ k +
4
τ k = 4(τ − 1) +

4
τ k < 2ε,

for k ≥ k0, since we can always arrange k0 to satisfy τ−k0 < ε/4.



How oscillations imply pointwise convergence

I Therefore, we obtain that

µ
(
{x ∈ X : sup

N∈Λ∩(Nj,Nj+1]

|AN;X,T f (x)− ANj;X,T f (x)| > ε}
)
> ε.

I Now applying oscillation inequality we obtain that

0 < ε3 ≤ 1
J

J∑
j=0

∥∥ sup
N∈Λ∩(Nj,Nj+1]

∣∣AN;X,T f − ANj;X,T f
∣∣∥∥2

L2(X)
≤ J−1CJ‖f‖2

L2(X),

but it is impossible since, the right-hand side tends to 0 as J →∞.
I This proves the pointwise convergence of AN;X,T f on L2(X) and

completes the proof.



Dziękuję!


