On pointwise convergence problems, part III

Mariusz Mirek
IAS Princeton \& Rutgers University
Uniwersytet Jagielloński
Kraków May 18, 2023

Supported by the NSF grant DMS-2154712, and the CAREER grant DMS-2236493.

Bourgain's pointwise ergodic theorem

In the early 1980's Bellow and Furstenberg asked independently about the poinwise convergence for polynomial ergodic averages

$$
A_{N ; X, T}^{P} f(x):=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{P(n)} x\right) \quad \text { for } \quad x \in X
$$

where $P \in \mathbb{Z}[\mathrm{n}]$ is a polynomial of degree >1.
Bourgain used the circle method of Hardy and Littlewood to show:
$\checkmark L^{p}(X)$ boundedness of the maximal function for any $1<p \leq \infty$, i.e.

$$
\left\|\sup _{N \in \mathbb{N}} \mid A_{N ; X, T}^{P} f\right\|_{L^{p}(X)} \lesssim\|f\|_{L^{p}(X)} \quad \text { for } \quad p \in(1, \infty]
$$

- Given an increasing sequence $\left(N_{j}: j \in \mathbb{N}\right)$, for each $J \in \mathbb{N}$ one has

$$
\left(\sum_{j=0}^{J}\left\|\sup _{N_{j} \leq N<N_{j+1}}\left|A_{N ; X, T}^{P} f-A_{N_{j} ; X, T}^{P} f\right|\right\|_{L^{2}(X)}^{2}\right)^{1 / 2} \leq o\left(J^{1 / 2}\right)\|f\|_{L^{2}(X)}
$$

Bourgain's maximal ergodic theorem for $M_{N}^{P}=A_{N ; \mathbb{Z}, S}^{P}$

- We prove that

$$
\left\|\sup _{n \in \mathbb{N}} \mid M_{2^{n}}^{P} f\right\|_{\ell^{2}(\mathbb{Z})} \lesssim\|f\|_{\ell^{2}(\mathbb{Z})}
$$

To simplify arguments assume that $P(x)=x^{d}$ and $d \geq 2$.

- Let

$$
K_{N}(x)=\frac{1}{N} \sum_{k=1}^{N} \delta_{P(k)}(x),
$$

then

$$
M_{N}^{P} f(x)=K_{N} * f(x) .
$$

- For $f \in \ell^{1}(\mathbb{Z})$ let

$$
\widehat{f}(\xi)=\sum_{k \in \mathbb{Z}} e^{2 \pi i \xi k} f(k)
$$

and observe that

$$
m_{N}(\xi)=\widehat{K}_{N}(\xi)=\frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i \xi k^{d}} \quad(\xi \in \mathbb{T})
$$

- Consequently

$$
M_{N}^{P} f(x)=K_{N} * f(x)=\mathcal{F}^{-1}\left(m_{N} \hat{f}\right)(x)
$$

Some heuristics

- First of all we have to understand the behaviour of

$$
m_{N}(\xi)=\frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i \xi k^{d}}
$$

and we would like to replace $m_{N}(\xi)$ with the integral

$$
\Phi_{N}(\xi)=\int_{0}^{1} e^{2 \pi i \xi(N x)^{d}} d x
$$

- We can not do this naively, since the derivative of the phase function $k^{d} \xi$ arising in the exponential sum is equal to $d k^{d-1} \xi$ and may be large.
- In general we have no control over the error term

$$
m_{N}(\xi)-\Phi_{N}(\xi)
$$

Gaussian sums

- If $\xi=a / q$ and $(a, q)=1$ then we see that $m_{N}(a / q)$ behaves like a complete Gaussian sum

$$
G(a / q)=\frac{1}{q} \sum_{r=1}^{q} e^{2 \pi i \frac{a}{q} r^{d}} .
$$

- Indeed,

$$
m_{N}(a / q)=\frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i \frac{a}{q} k^{d}}=\frac{1}{N} \sum_{r=1}^{q} \sum_{-\frac{r}{q}<k \leq \frac{N-r}{q}} e^{2 \pi i \frac{\alpha}{q}(q k+r)^{d}} \simeq \frac{1}{q} \sum_{r=1}^{q} e^{2 \pi i \frac{\alpha}{q} r^{d}} .
$$

- This suggests that the asymptotics for m_{N} should be concentrated in some neighbourhoods of Diophantine approximations of ξ with small denominators.

Small denominators - asymptotic formula for $m_{N}(\xi)$

- From Dirichlet's principle for any $\xi \in[0,1]$ and we can always find $a / q \in[0,1)$ such that $1 \leq q \leq N^{d-\beta},(a, q)=1$ and

$$
\left|\xi-\frac{a}{q}\right| \leq \frac{1}{q N^{d-\beta}}
$$

for any $\beta>0$. If $1 \leq q \leq N^{\beta}$ then

$$
\begin{aligned}
m_{N}(\xi)= & \frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i \xi \cdot k^{d}}=\frac{1}{N} \sum_{r=1}^{q} \sum_{-\frac{r}{q}<n \leq \frac{N-r}{q}} e^{2 \pi i\left(\xi-\frac{a}{q}\right)(q n+r)^{d}} e^{2 \pi i \frac{a}{q}(q n+r)^{d}} \\
& =\frac{1}{q N} \sum_{r=1}^{q} e^{2 \pi i \frac{a}{q} r^{d}} \cdot \frac{q}{N} \sum_{-\frac{r}{q}<n \leq \frac{N-r}{q}} e^{2 \pi i\left(\xi-\frac{a}{q}\right)(q n+r)^{d}} \\
= & \left(\frac{1}{q} \sum_{r=1}^{q} e^{2 \pi i \frac{a}{q} r^{d}}\right) \cdot\left(\int_{0}^{1} e^{2 \pi i\left(\xi-\frac{a}{q}\right)(N x)^{d}} d x\right)+\mathcal{O}\left(N^{-1 / 2}\right)
\end{aligned}
$$

- Therefore, if ξ is in the neighbourhood of a / q as above, we have

$$
m_{N}(\xi)=G(a / q) \cdot \Phi_{N}(\xi-a / q)+\mathcal{O}\left(N^{-1 / 2}\right)
$$

Large denominators - Weyl's inequality

- It was observed by Hardy and Littlewood that if $|\xi-a / q| \leq \frac{1}{q N^{d-\beta}} \leq q^{-2}$ and $(a, q)=1$ and $N^{\beta} \leq q \leq N^{d-\beta}$ then

$$
\left|m_{N}(\xi)\right|=\left|\frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i \xi k^{d}}\right| \lesssim N^{-\alpha}
$$

for some $\alpha \in(0,1)$. This follows from Weyl's inequality.

Lemma (Weyl's inequality)

Let $P(x)=a_{d} x^{d}+\ldots+a_{1} x$. Suppose there are $(a, q)=1$ such that $\left|a_{d}-a / q\right| \leq q^{-2}$. Then there is $C>0$ such that

$$
\frac{1}{N}\left|\sum_{m=1}^{N} e^{2 \pi i P(m)}\right| \leq C(\log N)^{2}\left(\frac{1}{q}+\frac{1}{N}+\frac{q}{N^{d}}\right)^{1 / 2^{d-1}}
$$

uniformly in N and q.

- Observe also that for some $\delta>0$ we have

$$
|G(a / q)|=\left|\frac{1}{q} \sum_{r=1}^{q} e^{2 \pi i \frac{a}{q} r^{d}}\right| \lesssim q^{-\delta}
$$

Projections $\Xi_{2^{n}}(\xi)$

- For $\varepsilon, \chi>0$ let us define the following projections

$$
\Xi_{N}(\xi)=\sum_{a / q \in \mathscr{R}_{\leq N^{\varepsilon}}} \eta\left(N^{(d-\chi)}(\xi-a / q)\right)
$$

with a smooth cuf-off function η and

$$
\mathscr{R}_{\leq N}=\{a / q \in \mathbb{T}:(a, q)=1 \text { and } 1 \leq q \leq N\} .
$$

- Since

$$
m_{2^{n}}(\xi)=m_{2^{n}}(\xi)\left(1-\Xi_{2^{n}}(\xi)\right)+m_{2^{n}}(\xi) \Xi_{2^{n}}(\xi),
$$

the first term is highly oscillatory, as supported in the regime where Weyl's inequality is efficient.

- The second term provides asymptotic and will be approximated by the integral

$$
\Phi_{N}(\xi)=\int_{0}^{1} e^{2 \pi i \xi(N x)^{d}} d x
$$

Highly oscillatory part: $m_{2^{n}}\left(1-\Xi_{2^{n}}\right)$

- From Weyl's inequality we have

$$
\left|m_{2^{n}}(\xi)\right|=\left|\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} e^{2 \pi i \xi k^{d}}\right| \lesssim 2^{-\alpha n}
$$

for a large $\alpha>0$, provided that $1-\Xi_{2^{n}}(\xi) \neq 0$.

- Therefore, by Plancherel's theorem

$$
\begin{aligned}
\left\|\sup _{n \in \mathbb{N}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}\left(1-\Xi_{2^{n}}\right) \hat{f}\right)\right|\right\|_{\ell^{2}} & \leq \sum_{n \in \mathbb{N}_{0}}\left\|\mathcal{F}^{-1}\left(m_{2^{n}}\left(1-\Xi_{2^{n}}\right) \hat{f}\right)\right\|_{\ell^{2}} \\
& \lesssim \sum_{n \in \mathbb{N}_{0}} 2^{-\alpha n}\|f\|_{\ell^{2}} \\
& \lesssim\|f\|_{\ell^{2}} .
\end{aligned}
$$

Asymptotic part: $m_{2^{n}} \Xi_{2^{n}}$

- Recall that if $a / q \in \mathscr{R}_{\leq 2^{\varepsilon n}}$ then we have

$$
m_{2^{n}}(\xi) \simeq G(a / q) \cdot \Phi_{2^{n}}(\xi-a / q)=\left(\frac{1}{q} \sum_{r=1}^{q} e^{2 \pi i \frac{a}{q} r^{d}}\right) \cdot\left(\int_{0}^{1} e^{2 \pi i\left(\xi-\frac{a}{q}\right)\left(2^{n} x\right)^{d}} d x\right) .
$$

- Therefore,

$$
m_{2^{n}}(\xi) \Xi_{2^{n}}(\xi) \simeq \sum_{s \geq 0} m_{2^{n}}^{s}(\xi)
$$

where

$$
m_{2^{n}}^{s}(\xi)=\sum_{a / q \in \mathscr{R}_{2^{s}}} G(a / q) \Phi_{2^{n}}(\xi-a / q) \eta\left(2^{s(d-\chi)}(\xi-a / q)\right),
$$

with $\mathscr{R}_{2^{s}}=\left\{a / q \in \mathbb{T}:(a, q)=1\right.$ and $\left.2^{s-1}<q \leq 2^{s}\right\}$.

- The task now is to show that for any $s \geq 0$ we have

$$
\left\|\sup _{n \in \mathbb{N}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right|\right\|_{\ell^{2}} \lesssim 2^{-\delta s}\|f\|_{\ell^{2}}, \quad f \in \ell^{2}(\mathbb{Z}),
$$

where $\delta>0$ comes from the estimate $|G(a / q)| \lesssim q^{-\delta}$.

The case $n \geq 2^{\kappa s}$

- We split the supremum into two parts $0 \leq n \leq 2^{\kappa s}$ and $n \geq 2^{\kappa s}$ for some $\kappa \in \mathbb{N}$ to be specified later.

$$
\begin{aligned}
\left\|\sup _{n \in \mathbb{N}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right|\right\|_{\ell^{2}} & \leq\left\|\sup _{n \geq 2^{\kappa s}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right|\right\|_{\ell^{2}} \\
& +\left\|\sup _{0 \leq n \leq 2^{\kappa s}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right|\right\|_{\ell^{2}}
\end{aligned}
$$

- For the first term we show that

$$
\begin{aligned}
\| \sup _{n \geq 2^{k s}} & \left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right| \|_{\ell^{2}} \\
& \lesssim 2^{-\delta s} \sup _{\|g\|_{L^{2}(\mathbb{R})}=1}\left\|\sup _{R>0}\left|R^{-1} \int_{0}^{R} g\left(x-t^{d}\right) d t\right|\right\|_{L^{2}(\mathbb{R})}\|f\|_{\ell^{2}(\mathbb{Z})},
\end{aligned}
$$

which by the Hardy-Littlewood maximal theorem for $p \in(1, \infty)$ one can conclude that

$$
\left\|\sup _{R>0}\left|R^{-1} \int_{0}^{R} g\left(x-t^{d}\right) d t\right|\right\|_{L^{p}(\mathbb{R})} \lesssim\|g\|_{L^{p}(\mathbb{R})} .
$$

The case $0 \leq n \leq 2^{k s}$

Rademacher-Menshov inequality
For any sequence $\left(a_{j}\right)_{0 \leq j \leq 2^{s}} \subseteq \mathbb{C}$ and any $s \in \mathbb{N}$ we have

$$
\sup _{0 \leq n \leq 2^{s}}\left|a_{n}\right| \leq\left|a_{0}\right|+\sqrt{2} \sum_{i=0}^{s}\left(\sum_{j=0}^{2^{s-i}-1}\left|a_{(j+1) 2^{i}}-a_{j 2^{i}}\right|^{2}\right)^{1 / 2}
$$

- Hence by Plancherel's theorem we obtain

$$
\begin{aligned}
& \left\|\sup _{0 \leq n \leq 2^{\kappa s}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right|\right\|_{\ell^{2}} \\
& \lesssim\left\|\sum_{i=0}^{\kappa s}\left(\sum_{j=0}^{2^{\kappa s-i}-1}\left(\sum_{k=j 2^{i}}^{(j+1) 2^{i}-1} \mathcal{F}^{-1}\left(\left(m_{2^{k+1}}^{s}-m_{2^{k}}^{s}\right) \hat{f}\right)\right)^{2}\right)^{1 / 2}\right\|_{\ell^{2}} \\
& \\
& \quad \lesssim \sum_{i=0}^{\kappa s}\left(\sum_{j=0}^{2^{\kappa s-i}-1}\left\|\sum_{k=j 2^{i}}^{(j+1) 2^{i}-1}\left(m_{2^{k+1}}^{s}-m_{2^{k}}^{s}\right) \hat{f}\right\|_{L^{2}}^{2}\right)^{1 / 2} .
\end{aligned}
$$

The case $0 \leq n \leq 2^{k s}$

$$
\begin{aligned}
& \left\|\sup _{0 \leq n \leq 2^{\kappa s}}\left|\mathcal{F}^{-1}\left(m_{2^{n}} \hat{f}\right)\right|\right\|_{\ell^{2}} \lesssim \sum_{i=0}^{\kappa s}\left(\sum_{j=0}^{2^{k s-i}-1}\left\|\sum_{k=j 2^{i}}^{(j+1) 2^{i}-1}\left(m_{2^{k+1}}^{s}-m_{2^{k}}^{s}\right) \hat{f}\right\|_{L^{2}}^{2}\right)^{1 / 2} \\
& \lesssim \sum_{l=0}^{\kappa s}\left(\left.\sum_{j=0}^{2^{\kappa s-l}-1} \sum_{j^{l} \leq k, k^{\prime}<(j+1) 2^{l}} \int_{\mathbb{T}}\left|m_{2^{k+1}}^{s}(\xi)-m_{2^{k}}^{s}(\xi) \| m_{2^{k^{\prime}+1}}^{s}(\xi)-m_{2^{k^{\prime}}}^{s}(\xi)\right| \hat{f}(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& \quad \lesssim s\left(\sum_{a / q \in \mathscr{R}_{2^{s}}}|G(a / q)|^{2} \int_{\mathbb{T}}|\hat{f}(\xi)|^{2} \eta\left(2^{s(d-\chi)}(\xi-a / q)\right)^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

since

$$
\sum_{j \in \mathbb{Z}}\left|\Phi_{2^{j+1}}(\xi)-\Phi_{2^{j}}(\xi)\right| \lesssim \sum_{j \in \mathbb{Z}} \min \left\{\left|2^{j} \xi\right|,\left|2^{j} \xi\right|^{-1 / d}\right\} \lesssim 1
$$

Finally we obtain

$$
\left\|\sup _{0 \leq n \leq 2^{\kappa s}}\left|\mathcal{F}^{-1}\left(m_{2^{n}}^{s} \hat{f}\right)\right|\right\|_{\ell^{2}} \lesssim s 2^{-\delta s}\|f\|_{\ell^{2}}
$$

L^{p} good and bad sequences

Theorem (Bourgain's ergodic theorem, (1989))
Let $(X, \mathcal{B}(X), \mu, T)$ be a σ-finite measure preserving system. For every
$1<p<\infty$ and $P \in \mathbb{Z}[n]$ and $f \in L^{p}(X)$ there exists $f^{*} \in L^{p}(X)$ such that

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(T^{P(n)} x\right) \underset{N \rightarrow \infty}{\longrightarrow} f^{*}(x)
$$

- This theorem gives a positive answer to Bellow and Furstenberg problem, and inspired many authors to investigate the averages

$$
A_{N}^{a_{n}} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{a_{n}} x\right)
$$

defined along sequences $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{Z}$. We will say that

- $\left(a_{n}\right)_{n \in \mathbb{N}}$ is L^{p}-good if the pointwise convergence of $A_{N}^{a_{n}} f(x)$ holds for every dynamical system $(X, \mathcal{B}(X), \mu, T)$ and every $f \in L^{p}(X)$.
- Otherwise $\left(a_{n}\right)_{n \in \mathbb{N}}$ is L^{p}-bad.

Examples

- $a_{n}=n$ is L^{p}-good for $p \geq 1$,
- Birkhoff ergodic theorem (1931).
- $a_{n}=P(n)$ is L^{p}-good for $p>1$, where $P \in \mathbb{Z}[n]$,
- Bourgain (1989).
- $a_{n}=n$-th prime number, is L^{p}-good for $p>1$,
- Bourgain/Wierdl (1989).

The question about the endpoint estimates $p=1$ was a major open problem in pointwise ergodic theory that led to a remarkable conjecture:

Conjecture (Rosenblatt \& Wierdl (1991))

There are no sequences $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$, with gaps tending to infinity, i.e.

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\infty
$$

which are L^{1}-good.

Examples

Meanwhile, L^{p} theory (for $p>1$) has been developed, and it was shown

- $a_{n}=\lfloor h(n)\rfloor$ is L^{p}-good for $p>1$,
- Boshernitzan, Kolesnik, Quas \& Wierdl (2005), where

$$
\begin{aligned}
h(x) & =x^{c} \log ^{A} x, \\
h(x) & =x^{c} e^{A \log ^{B} x} \\
h(x) & =x^{c} \log \log \ldots \log x,
\end{aligned}
$$

with $c \geq 1, A \in \mathbb{R}, B \in(0,1)$.

- $a_{n}=\left\lfloor n^{c}\right\rfloor$ is L^{1}-good for $1<c<1.001$,
- Urban \& Zienkiewicz (2007).

This gives a negative answer to Rosenblatt and Wierdl's conjecture.

- $a_{n}=n^{k}$ is L^{1}-bad
- for $k=2$, Buczolich \& Mauldin (2010),
- for $k \geq 2$, LaVictoire (2011).
- $a_{n}=n$-th prime number, is L^{1}-bad
- LaVictoire (2011).

Other $L^{1} \operatorname{good}$ sequences

Theorem (M. (2013))

Assume that $1<c<30 / 29 \simeq 1.0345$, and let h be a function of the form

$$
h(n)=n^{c} L(n)
$$

where $L(n)$ is a slowly varying function (satisfying certain smoothness conditions). Then the sequence

$$
a_{n}=\lfloor h(n)\rfloor \quad \text { is } L^{1} \text {-good. }
$$

In particular, there is a constant $C>0$ such that for any σ-finite measure preserving system $(X, \mathcal{B}(X), \mu, T)$ we have

$$
\mu\left(\left\{x \in X: \sup _{N \in \mathbb{N}}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(T^{a_{n}} x\right)\right|>\lambda\right\}\right)<\frac{C}{\lambda}\|f\|_{L^{1}(X)}
$$

for every $\lambda>0$ and $f \in L^{1}(X)$.

Bergelson-Richter prime number theorem

Let $\Omega(n)$ denote the number of prime factors of a natural number $n \in \mathbb{N}$ counted with multiplicities.

Theorem (Bergelson-Richter theorem (2020))

Let (X, μ, T) be uniquely ergodic topological system. Then

$$
\frac{1}{N} \sum_{k=1}^{N} f\left(T^{\Omega(k)} x\right) \underset{N \rightarrow \infty}{\longrightarrow} \int_{X} f(y) d \mu(y),
$$

for every every $x \in X$ and $f \in C(X)$. In particular, for every $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ the sequence $(\{\alpha \Omega(n)\})_{n \in \mathbb{N}}$ is equidistributed.
Surprisingly, unique ergodicity and continuity are essential, as we have that

Theorem (Loyd's theorem (2023))

For any non-atomic ergodic probability measure preserving system $(X, \mathcal{B}(X), \mu, T)$ there exists a measurable set $A \in \mathcal{B}(X)$ such that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \mathbb{1}_{A}\left(T^{\Omega(k)} x\right)=0 \quad \text { and } \quad \limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \mathbb{1}_{A}\left(T^{\Omega(k)} x\right)=1
$$

for almost all $x \in X$.

Oscillation inequality for Birkhoff's operators

Recall that

$$
A_{N ; X, T} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) .
$$

Fix $\tau \in(1,2]$ and define $\Lambda=\left\{\left\lfloor\tau^{k}\right\rfloor: k \in \mathbb{N} \cup\{0\}\right\}$. Let $\left(k_{j}\right)_{j \in \mathbb{N}}$ be an increasing sequence and set $N_{j}=\left\lfloor\tau^{k_{j}}\right\rfloor$.

Theorem

Let $(X, \mathcal{B}(X), \mu, T)$ be a measure-preserving system then for every $J \in \mathbb{N}$ there is $C_{J}>0$ such that we have

$$
\begin{equation*}
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|A_{N ; X, T} f-A_{N_{j} ; X, T} f\right|\right\|_{L^{2}(X)}^{2} \leq C_{J}\|f\|_{L^{2}(X)}^{2} \tag{1}
\end{equation*}
$$

and $\lim _{J \rightarrow \infty} C_{J} / J=0$. In particular, for every $f \in L^{2}(X)$ there exists $f^{*} \in L^{2}(X)$ such that

$$
\lim _{N \rightarrow \infty} A_{N ; X, T} f(x)=f^{*}(x)
$$

for μ-almost every $x \in X$.

Proof of the oscillation inequality for Birkhoff's operators

- Repeating the same argument as in the proof of transference principle it only suffices to work with $(\mathbb{Z}, \mathbf{P}(\mathbb{Z}),|\cdot|, S)$ with $S(x)=x-1$. Then

$$
A_{N ; X, S} f(x)=M_{N} f(x)=\frac{1}{N} \sum_{n=1}^{N} f(x-n)=K_{N} * f(x), \quad f \in \ell^{2}(\mathbb{Z})
$$

where

$$
K_{N}(x)=\frac{1}{N} \sum_{n=1}^{N} \delta_{n}(x), \quad x \in \mathbb{Z}
$$

- By the bounds for the Hardy-Littlewood maximal function

$$
\left\|\sup _{N \in \mathbb{N}} \mid M_{N} f\right\|_{\ell^{p}(\mathbb{Z})} \lesssim\|f\|_{\ell^{p}(\mathbb{Z})}
$$

one can assume that $f \in \ell^{2}(\mathbb{Z}) \cap \ell^{\infty}(\mathbb{Z})$ and $f \geq 0$ is finitely supported.

- For $f \in \ell^{1}(\mathbb{Z})$ let us denote by

$$
\hat{f}(\xi)=\sum_{n \in \mathbb{Z}} e^{2 \pi i n \xi} f(n)
$$

the discrete Fourier transform on \mathbb{Z} and let \mathcal{F}^{-1} be its inverse.

Proof of the oscillation inequality for Birkhoff's operators

- One can see that $\widehat{M_{N} f}(\xi)=\hat{K}_{N}(\xi) \hat{f}(\xi)$, where

$$
\hat{K}_{N}(\xi)=\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i n \xi}
$$

- Let $B_{j}=\left\{x \in(-1 / 2,1 / 2):|x| \leq N_{j}^{-1}\right\}$. By Plancherel's theorem

$$
\begin{aligned}
& \sum_{j=0}^{J} \| \sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j+1}} \hat{f}\right)\right| \|_{\ell^{2}}^{2} \\
& \leq \sum_{j=0}^{J} \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left\|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j+1}} \hat{f}\right)\right\|_{\ell^{2}}^{2} \\
& \leq\left\|\sum_{j=0}^{J} \mathbb{1}_{B_{j+1}} \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\hat{K}_{N}-\hat{K}_{N_{j}}\right|^{2}\right\|_{L^{\infty}}\|f\|_{\ell^{2}}^{2}
\end{aligned}
$$

Proof of the oscillation inequality for Birkhoff's operators

- For $N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]$ we have

$$
\left|\hat{K}_{N}(\xi)-\hat{K}_{N_{j}}(\xi)\right| \lesssim|\xi| N,
$$

hence

$$
\begin{aligned}
& \sum_{j=0}^{J} \mathbb{1}_{B_{j+1}}(\xi) \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\hat{K}_{N}(\xi)-\hat{K}_{N_{j}}(\xi)\right|^{2} \\
& \lesssim|\xi|^{2} \sum_{j=0}^{J} \mathbb{1}_{B_{j+1}}(\xi) \sum_{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]} N^{2} \\
& \lesssim|\xi|^{2} \sum_{j: N_{j+1} \leq|\xi|^{-1}} N_{j+1}^{2} \lesssim 1 .
\end{aligned}
$$

Therefore, we obtain

$$
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j+1}} \hat{f}\right)\right|\right\|_{\ell^{2}}^{2} \lesssim\|f\|_{\ell^{2}}^{2}
$$

Proof of the oscillation inequality for Birkhoff's operators

- Similar for B_{j}^{c}, replacing $\hat{K}_{N_{j}}$ by $\hat{K}_{N_{j+1}}$ under the supremum, we can estimate

$$
\begin{aligned}
& \sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j}^{c}} \hat{f}\right)\right|\right\|_{\ell^{2}}^{2} \\
& \lesssim \sum_{j=0}^{J} \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]}\left\|\mathcal{F}^{-1}\left(\left(\hat{K}_{N_{j+1}}-\hat{K}_{N}\right) \mathbb{1}_{B_{j}} \hat{c}\right)\right\|_{\ell^{2}}^{2} \\
& \leq\left\|\sum_{j=0}^{J} \mathbb{1}_{B_{j}^{c}} \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]}\left|\hat{K}_{N_{j+1}}-\hat{K}_{N}\right|^{2}\right\|_{L^{\infty}}\|f\|_{\ell^{2}}^{2}
\end{aligned}
$$

Now for $N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]$ we obtain

$$
\left|\hat{K}_{N_{j+1}}(\xi)-\hat{K}_{N}(\xi)\right| \lesssim|\xi|^{-1} N^{-1}
$$

Proof of the oscillation inequality for Birkhoff's operators

- Thus

$$
\begin{aligned}
& \sum_{j=0}^{J} \mathbb{1}_{B_{j}^{c}}(\xi) \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]}\left|\hat{K}_{N_{j+1}}(\xi)-\hat{K}_{N}(\xi)\right|^{2} \\
& \lesssim|\xi|^{-2} \sum_{j=0}^{J} \mathbb{1}_{B_{j}^{c}}(\xi) \sum_{N \in \Lambda \cap\left[N_{j}, N_{j+1}\right]} N^{-2} \\
& \lesssim|\xi|^{-2} \sum_{j: N_{j} \geq|\xi|^{-1}} N_{j}^{-2} \lesssim 1 .
\end{aligned}
$$

Therefore, we conclude

$$
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|\mathcal{F}^{-1}\left(\left(\hat{K}_{N}-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j}^{c}} \hat{f}\right)\right|\right\|_{\ell^{2}}^{2} \lesssim\|f\|_{\ell^{2}}^{2}
$$

Proof of the oscillation inequality for Birkhoff's operators

- Finally, for $p=2$ we obtain

$$
\begin{aligned}
\sum_{j=0}^{J} \| \sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]} \mid \mathcal{F}^{-1}\left(\left(\hat{K}_{N}\right.\right. & \left.\left.-\hat{K}_{N_{j}}\right) \mathbb{1}_{B_{j}} \mathbb{1}_{B_{j+1}^{c}} \hat{f}\right) \mid \|_{\ell^{2}}^{2} \\
& \lesssim \sum_{j=0}^{J}\left\|\mathcal{F}^{-1}\left(\mathbb{1}_{B_{j}} \mathbb{1}_{B_{j+1}^{c}} \hat{f}\right)\right\|_{\ell^{2}}^{2} \leq\|f\|_{\ell^{2}}^{2}
\end{aligned}
$$

- Hence

$$
\sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|A_{N ; X, T} f-A_{N_{j} ; X, T} f\right|\right\|_{L^{2}(X)}^{2} \leq C_{J}\|f\|_{L^{2}(X)}^{2}
$$

- In fact we have proved that C_{J} is constant. The proof of (1) is completed.

How oscillations imply pointwise convergence

- By the maximal inequality for $p=2$ we can assume that $f \in L^{2}(X)$ is bounded and $\|f\|_{L^{\infty}(X)} \leq 1$.
- Suppose for a contradiction that $\left(A_{N ; X, T} f(x)\right)_{N \in \mathbb{N}}$ does not converge. Then there is $\varepsilon \in(0,1)$ such that

$$
\mu\left(\left\{x \in X: \limsup _{M, N \rightarrow \infty}\left|A_{M ; X, T} f(x)-A_{N ; X, T} f(x)\right|>8 \varepsilon\right\}\right)>8 \varepsilon
$$

- Thus there exists $\left(k_{j}\right)_{j \in \mathbb{N}}$ such that

$$
\mu\left(\left\{x \in X: \sup _{N_{j}<N \leq N_{j+1}}\left|A_{N ; X, T} f(x)-A_{N_{j} ; X, T} f(x)\right|>4 \varepsilon\right\}\right)>4 \varepsilon,
$$

where $N_{j}=\left\lfloor\tau^{k_{j}}\right\rfloor$ and $\tau=1+\varepsilon / 4$.

- If $\left\lfloor\tau^{k}\right\rfloor \leq N<\left\lfloor\tau^{k+1}\right\rfloor$ then

$$
\begin{gathered}
\left|A_{N ; X, T} f-A_{\left\lfloor\tau^{k}\right\rfloor ; X, T} f\right|=\left|\frac{1}{N} \sum_{n=\left\lfloor\tau^{k}\right\rfloor+1}^{N} f\left(T^{n} x\right)-\frac{N-\left\lfloor\tau^{k}\right\rfloor}{N\left\lfloor\tau^{k}\right\rfloor} \sum_{n=1}^{\left\lfloor\tau^{k}\right\rfloor} f\left(T^{n} x\right)\right| \\
\leq \frac{2\left(N-\left\lfloor\tau^{k}\right\rfloor\right)}{N} \leq \frac{4 \tau^{k}(\tau-1)}{\tau^{k}}+\frac{4}{\tau^{k}}=4(\tau-1)+\frac{4}{\tau^{k}}<2 \varepsilon
\end{gathered}
$$

for $k \geq k_{0}$, since we can always arrange k_{0} to satisfy $\tau^{-k_{0}}<\varepsilon / 4$.

How oscillations imply pointwise convergence

- Therefore, we obtain that

$$
\mu\left(\left\{x \in X: \sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]}\left|A_{N ; X, T} f(x)-A_{N_{j} ; X, T} f(x)\right|>\varepsilon\right\}\right)>\varepsilon .
$$

- Now applying oscillation inequality we obtain that

$$
0<\varepsilon^{3} \leq \frac{1}{J} \sum_{j=0}^{J}\left\|\sup _{N \in \Lambda \cap\left(N_{j}, N_{j+1}\right]} \mid A_{N ; X, T} f-A_{N_{j} ; X, T} f\right\|_{L^{2}(X)}^{2} \leq J^{-1} C_{J}\|f\|_{L^{2}(X)}^{2},
$$

but it is impossible since, the right-hand side tends to 0 as $J \rightarrow \infty$.

- This proves the pointwise convergence of $A_{N ; X, T} f$ on $L^{2}(X)$ and completes the proof.

Dziękuję!

