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Quadratic form: Q(x1, . . . , xr ) =
∑

1≤i≤j≤r aijxixj , aij ∈ Z.

r is the rank of Q.

Which integers are represented by Q?

Rich history:
(1) Pythagorean triples: x2 + y2 − z2 = 0 (Babylonia ∼ 1800BC),
(2) Pell equation: x2 − dy2 = 0 (India ∼ 600BC, Fermat ∼ 1650s),
(3) Sum of four squares: x2 + y2 + z2 + t2 represents all positive
integers (Lagrange ∼ 1770).

Q is universal if it represents all the numbers in N.

Example:

(1) Q(x , y , z , t) = x2 + y2 + z2 + t2 is universal (Lagrange),
(2) Q(x , y , z) = x2 + y2 + z2 is not universal (x2 + y2 + z2 6= 7).
(3) many inde�nite quadratic forms, eq. x2 − y2 − dz2, 4 - d .

We assume that Q is positive de�nite.



Q is universal if it represents all the numbers in N and is positive
de�nite.

Q =
∑

1≤i≤j≤r aijxixj is classical if aij is even for i 6= j .

Theorem (Conway-Schneeberger, 1995). Let Q be classical. Then
Q is universal if and only if it represents {1, 2, 3, 5, 6, 7, 10, 14, 15}.

Proof. Q - universal =⇒ Q - represents 1 =⇒ Q = x2 + · · ·
Q - represents 2 =⇒ Q = x2 + 2y2 + 2axy + · · ·

Q - positive de�nite =⇒ 0 ≤ det

(
1 a
a 2

)
= 2− a2 =⇒ a ∈ {0, 1}

Hence, Q = x2 + 2y2 + · · · or
Q = x2 + 2xy + 2y2 + · · · = (x + y)2 + y2 + · · · = X 2 + Y 2 + · · ·
and so on. �

Theorem (Bhargava-Hanke, 2011). Q is universal if and only if Q
represents {1, . . . , 290}.

Example: x2 + 2y2 + 5z2 + 5t2 represents N \ {15}.



Quadratic form: Q(x1, . . . , xr ) =
∑

1≤i≤j≤r aij xi xj , aij ∈ Z.
r is the rank of Q.
Q is universal if it represents all the numbers in N and is positive de�nite.
Q is classical if aij ∈ 2Z for i 6= j.

D > 1 squarefree, ωD :=

{ √
D, D ≡ 2, 3 (mod 4)

1+
√
D

2
, D ≡ 1 (mod 4).

Q  K := Q(
√
D),

Z  OK := Z [ωD ],

N  O+
K :=

{
a+ b

√
D ∈ OK | a+ b

√
D > 0, a− b

√
D > 0

}
.

Example: 1+
√
2 6∈ O+

Q(
√
2)
, 2−

√
2 ∈ O+

Q(
√
2)
.

Quadratic form: Q(x1, . . . , xr ) =
∑

1≤i≤j≤r aijxixj , aij ∈ OK .

Q is totally positive de�nite if Q(x) ∈ O+
K for all x ∈ Or

K \ {0}.

Q is universal if it:
(1) represents all the numbers in O+

K ,
(2) is totally positive de�nite.

Q is classical if aij ∈ 2OK for all i 6= j .



D > 0, square free, ωD :=

{ √
D, D ≡ 2, 3 (mod 4)

1+
√

D
2

, D ≡ 1 (mod 4).
, K := Q(

√
D), OK := Z[ωD ],

O+
K

:=
{

a + b
√

D ∈ OK | a + b
√
D > 0, a − b

√
D > 0

}
.

Quadratic form: Q(x1, . . . , xr ) =
∑

1≤i≤j≤r aij xi xj , aij ∈ O+
K
, r is the rank of Q.

Q is universal if it is totally positive de�nite and represents all the numbers in O+
K
.

Q is classical if aij ∈ 2OK for all i 6= j.

Universal quadratic forms exist over every K .

Example: If sum of r squares x21 + · · ·+ x2r is universal over K then:
(1) K = Q and r = 4, or
(2) K = Q(

√
5) and r = 3. (Maass, Siegel, 1945).

Question: For a given K , what is the minimal possible r?

(1) Characterisation of classical universal ternary quadratic forms(
exist only in Q

(√
2
)
, Q
(√

3
)
and Q

(√
5
))

(Chan, Kim, Raghavan,
1996).

(2) In every Q
(√

n2 − 1
)
, n2 − 1 squarefree, there is an universal

form with r = 8 (Kim, 1999).

(3) There are only �nitely many Q
(√

D
)
with an universal form

with r = 7 (Kim, Kim, Park, 2021).



D > 0, square free, ωD :=

{ √
D, D ≡ 2, 3 (mod 4)

1+
√

D
2

, D ≡ 1 (mod 4).
, K := Q(

√
D), OK := Z[ωD ],

O+
K

:=
{

a + b
√

D ∈ OK | a + b
√
D > 0, a − b

√
D > 0

}
.

Quadratic form: Q(x1, . . . , xr ) =
∑

1≤i≤j≤r aij xi xj , aij ∈ O+
K
, r is the rank of Q.

Q is universal if it is totally positive de�nite and represents all the numbers in O+
K
.

Q is classical if aij ∈ 2OK for all i 6= j.

R(K ) := min{ r | there exists universal q. f. over K of rank r }

Rcl(K ) := min{r | there is classical univ. q. f. over K of rank r}

Theorem (Blomer-Kala, 2015; Kala, 2016). For every R there exist
in�nitely many squarefree D such that R(Q(

√
D)) ≥ R .

Their method produced only a very sparse set of D such that
R(Q(

√
D)) ≥ R (containing ≈ e−cR

√
X discriminants D ≤ X for

some c > 1).



R(K) := min{ r | there exists universal quadratic form over K of rank r }
Rcl (K) := min{ r | there exists classical universal quadratic form over K of rank r }
Theorem (Blomer-Kala, 2015; Kala, 2016). For every R there exist in�nitely many squarefree D such
that R(Q(

√
D)) ≥ R.

Let us focus on the case of classical quadratic forms.

Theorem A (Kala-Yatsyna-�., 2023) For every R and X let

D(R,X ) := #{ D ≤ X squarefree | Rcl(Q(
√
D)) ≤ R }.

Then for every X ≥ 212R12(logX )4 we have

D(R,X ) < 300R3/2X 7/8(logX )3/2.

Theorem B (Kala-Yatsyna-�., 2023) Let ε > 0. Then for almost
all (in the sense of natural density) squarefree D > 0,

R(Q(
√
D)) ≥ D

1
24−ε, Rcl(Q(

√
D)) ≥ D

1
12−ε.

Proof of Theorem B. Put R = X
1
12−ε is Theorem A. �



R(K) := min{ r | there exists universal quadratic form over K of rank r }
Rcl (K) := min{ r | there exists classical universal quadratic form over K of rank r }
D(R, X ) := #{ D ≤ X squarefree | Rcl (Q(

√
D)) ≤ R }

Theorem A (Kala-Yatsyna-�., 2023). For every X ≥ 212R12(log X )4 we have
D(R, X ) < 300R3/2X7/8(log X )3/2.

Proof of Theorem A. Assume that D ≡ 2, 3 (mod 4),
K := Q(

√
D).

Consider the continued fraction expansion of
√
D:√

D = u0 +
1

u1+ 1
u2+ 1

u3+···

=: [u0; u1, . . . , us ].

For example:
√
5 = 2+ (

√
5− 2) = 2+ 1√

5+2
= 2+ 1

4+(
√
5−2)

=

2+ 1

4+ 1√
5+2

= . . . = 2+ 1

4+ 1
4+ 1

4+···

= [2; 4].

Denote u := max{u2j+1 | j ≥ 0} = u2i+1.

Let u0 + 1

u1+ 1
···+ 1

uk

= pk
qk

for every k and

Br := (p2i−1 + q2i−1
√
D) + r(p2i + q2i

√
D) for 0 ≤ r ≤ u.

Then Br ∈ O+
K and there is δ ∈ K+ such that Tr(δBr ) = 1 and

Tr(δOK ) ⊆ Z.



R(K) := min{ r | there exists universal quadratic form over K of rank r }
Rcl (K) := min{ r | there exists classical universal quadratic form over K of rank r }
D(R, X ) := #{ D ≤ X squarefree | Rcl (Q(

√
D)) ≤ R }

Theorem A (Kala-Yatsyna-�., 2023). For every X ≥ 212R12(log X )4 we have
D(R, X ) < 300R3/2X7/8(log X )3/2.

Proof of Theorem A. Assume that D ≡ 2, 3 (mod 4), K := Q(
√
D).√

D = u0 + 1

u1+ 1

u2+ 1

u3+···

=: [u0; u1, . . . , us ]. Denote u := max{u2j+1 | j ≥ 0} = u2i+1.

Let u0 + 1

u1+ 1

···+ 1

uk

=
pk
qk

and Br := (pi + qi
√

D) + r(pi+1 + qi+1
√
D) for 0 ≤ r ≤ u.

Then Br ∈ O+
K

and there is δ ∈ K+ such that Tr(δBr ) = 1 and Tr(δOK ) ⊆ Z.

Let
ϕ : OR

K 3 (a1 + b1
√
D, . . . , aR + bR

√
D) 7→ (a1, b1, . . . , aR , bR) ∈

Z2R .

Let Q be a classical universal q. f. over Q(
√
D) of rank R . Let

Q(wr ) = Br .

Then q(v) := Tr(δQ(ϕ−1(v))) is classical and positive de�nite q. f.
over Q of rank 2R . Moreover,

q(±ϕ(wr )) = Tr(δQ(wr )) = Tr(δBr ) = 1.



R(K) := min{ r | there exists universal quadratic form over K of rank r }
Rcl (K) := min{ r | there exists classical universal quadratic form over K of rank r }
D(R, X ) := #{ D ≤ X squarefree | Rcl (Q(

√
D)) ≤ R }

Theorem A (Kala-Yatsyna-�., 2023). For every X ≥ 212R12(log X )4 we have
D(R, X ) < 300R3/2X7/8(log X )3/2.

Proof of Theorem A. Assume that D ≡ 2, 3 (mod 4), K := Q(
√
D).√

D = u0 + 1

u1+ 1

u2+ 1

u3+···

=: [u0; u1, . . . , us ]. Denote u := max{u2j+1 | j ≥ 0} = u2i+1.

Let u0 + 1

u1+ 1

···+ 1

uk

=
pk
qk

and Br := (pi + qi
√

D) + r(pi+1 + qi+1
√
D) for 0 ≤ r ≤ u.

Then Br ∈ O+
K

and there is δ ∈ K+ such that Tr(δBr ) = 1 and Tr(δOK ) ⊆ Z.
Let ϕ : OR

K 3 (a1 + b1
√

D, . . . , aR + bR
√
D) 7→ (a1, b1, . . . , aR , bR ) ∈ Z2R .

Let Q be a classical universal q. f. over Q(
√
D) of rank R. Let Q(wr ) = Br .

Then q(v) := Tr(δQ(ϕ−1(v))) is classical and positive de�nite q. f. on Z2R of rank 2R.
Moreover, q(±ϕ(wr )) = Tr(δQ(wr )) = Tr(δBr ) = 1.

We have constructed 2(u + 1) > 2u arguments v such that
q(v) = 1. Hence, 2u < 2 · 2R , that is, u < 2R .

If X ≥ B12(logX )4 then

#
{
D ≤ X |

√
D = [u0; u1, . . . , us ], max{u2i+1 | i ≥ 0} ≤ B

}
< 100B3/2X 7/8(logX )4.

Apply the above inequality with B = 2R . �



R(K) := min{ r | there exists universal quadratic form over K of rank r }
Rcl (K) := min{ r | there exists classical universal quadratic form over K of rank r }
D(R, X ) := #{ D ≤ X squarefree | Rcl (Q(

√
D)) ≤ R }

Theorem A (Kala-Yatsyna-�., 2023). For every X ≥ 212R12(log X )4 we have
D(R, X ) < 300R3/2X7/8(log X )3/2.

Theorem B (Kala-Yatsyna-�., 2023) Let ε > 0. Then for almost all (in the sense of natural density)
squarefree D > 0,

R(Q(
√
D)) ≥ D

1

24
−ε
, Rcl (Q(

√
D)) ≥ D

1

12
−ε
.

Let m ∈ N.

Q is mOK -universal if it is totally positive de�nite and represents
mO+

K .

If Q is universal but is not classical then 2Q is 2OK -universal and
classical.



R(K) := min{ r | there exists universal quadratic form over K of rank r }
Rcl (K) := min{ r | there exists classical universal quadratic form over K of rank r }
D(R, X ) := #{ D ≤ X squarefree | Rcl (Q(

√
D)) ≤ R }

Theorem A (Kala-Yatsyna-�., 2023). For every X ≥ 212R12(log X )4 we have
D(R, X ) < 300R3/2X7/8(log X )3/2.

Theorem B (Kala-Yatsyna-�., 2023) Let ε > 0. Then for almost all (in the sense of natural density)
squarefree D > 0,

R(Q(
√
D)) ≥ D

1

24
−ε
, Rcl (Q(

√
D)) ≥ D

1

12
−ε
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Q is mOK -universal if it is totally positive de�nite and represents mO+
K
.

If Q is universal but is not classical then 2Q is 2OK -universal and classical.

D(R,m,X ) := #{ D ≤ X squarefree | there exists mOK −
universal classical q. f. over K = Q(

√
D) of rank R }.

Theorem C (Kala-Yatsyna-�., 2023) For every
X ≥ B(R,m)12(logX )4 we have

D(R,m,X ) < 100B(R,m)3/2X 7/8(logX )3/2,
where B(R,m) := 1

2
C (2R,m), and

C (R,m) :=


2R, m = 1,
max{480, 2R(R − 1)}, m = 2,∑R

k=0

(R
k

)
π

k
2

Γ( k
2+1)

m
k
2 , m ≥ 3.
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