# Ranks of universal quadratic forms over quadratic fields 

Błażej Żmija<br>Charles University<br>19/05/2023

Joint work with Vítua Kala and Pavlo Yatsyna

Quadratic form: $\quad Q\left(x_{1}, \ldots, x_{r}\right)=\sum_{1 \leq i \leq j \leq r} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathbb{Z}$.
$r$ is the rank of $Q$.
Which integers are represented by $Q$ ?
Rich history:
(1) Pythagorean triples: $x^{2}+y^{2}-z^{2}=0$ (Babylonia $\sim 1800 \mathrm{BC}$ ),
(2) Pell equation: $x^{2}-d y^{2}=0$ (India $\sim 600 B C$, Fermat $\sim 1650 s$ ),
(3) Sum of four squares: $x^{2}+y^{2}+z^{2}+t^{2}$ represents all positive integers (Lagrange $\sim 1770$ ).
$Q$ is universal if it represents all the numbers in $\mathbb{N}$.
Example:
(1) $Q(x, y, z, t)=x^{2}+y^{2}+z^{2}+t^{2}$ is universal (Lagrange),
(2) $Q(x, y, z)=x^{2}+y^{2}+z^{2}$ is not universal $\left(x^{2}+y^{2}+z^{2} \neq 7\right)$.
(3) many indefinite quadratic forms, eq. $x^{2}-y^{2}-d z^{2}, 4 \nmid d$.

We assume that $Q$ is positive definite.
$Q$ is universal if it represents all the numbers in $\mathbb{N}$ and is positive definite.
$Q=\sum_{1 \leq i \leq j \leq r} a_{i j} x_{i} x_{j}$ is classical if $a_{i j}$ is even for $i \neq j$.
Theorem (Conway-Schneeberger, 1995). Let $Q$ be classical. Then $Q$ is universal if and only if it represents $\{1,2,3,5,6,7,10,14,15\}$.
Proof. $Q$ - universal $\Longrightarrow Q$ - represents $1 \Longrightarrow Q=x^{2}+\cdots$
$Q$ - represents $2 \Longrightarrow Q=x^{2}+2 y^{2}+2 a x y+\cdots$
$Q$ - positive definite $\Longrightarrow 0 \leq \operatorname{det}\left(\begin{array}{ll}1 & a \\ a & 2\end{array}\right)=2-a^{2} \Longrightarrow a \in\{0,1\}$ Hence, $Q=x^{2}+2 y^{2}+\cdots$ or $Q=x^{2}+2 x y+2 y^{2}+\cdots=(x+y)^{2}+y^{2}+\cdots=X^{2}+Y^{2}+\cdots$ and so on. $\square$

Theorem (Bhargava-Hanke, 2011). $Q$ is universal if and only if $Q$ represents $\{1, \ldots, 290\}$.

Example: $x^{2}+2 y^{2}+5 z^{2}+5 t^{2}$ represents $\mathbb{N} \backslash\{15\}$.

Quadratic form: $\quad Q\left(x_{\mathbf{1}}, \ldots, x_{r}\right)=\sum_{\mathbf{1} \leq i \leq j \leq r} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathbb{Z}$.
$r$ is the rank of $Q$.
$Q$ is universal if it represents all the numbers in $\mathbb{N}$ and is positive definite.
$Q$ is classical if $a_{i j} \in 2 \mathbb{Z}$ for $i \neq j$.
$D>1$ squarefree, $\omega_{D}:= \begin{cases}\sqrt{D}, & D \equiv 2,3(\bmod 4) \\ \frac{1+\sqrt{D}}{2}, & D \equiv 1(\bmod 4) .\end{cases}$
$\mathbb{Q} \rightsquigarrow K:=\mathbb{Q}(\sqrt{D})$,
$\mathbb{Z} \leadsto \mathcal{O}_{K}:=\mathbb{Z}\left[\omega_{D}\right]$,
$\mathbb{N} \rightsquigarrow \mathcal{O}_{K}^{+}:=\left\{a+b \sqrt{D} \in \mathcal{O}_{K} \mid a+b \sqrt{D}>0, a-b \sqrt{D}>0\right\}$.
Example: $1+\sqrt{2} \notin \mathcal{O}_{\mathbb{Q}(\sqrt{2})}^{+}, 2-\sqrt{2} \in \mathcal{O}_{\mathbb{Q}(\sqrt{2})}^{+}$.
Quadratic form: $\quad Q\left(x_{1}, \ldots, x_{r}\right)=\sum_{1 \leq i \leq j \leq r} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathcal{O}_{K}$.
$Q$ is totally positive definite if $Q(\mathbf{x}) \in \mathcal{O}_{K}^{+}$for all $\mathbf{x} \in \mathcal{O}_{K}^{r} \backslash\{0\}$.
$Q$ is universal if it:
(1) represents all the numbers in $\mathcal{O}_{K}^{+}$,
(2) is totally positive definite.
$Q$ is classical if $a_{i j} \in 2 \mathcal{O}_{K}$ for all $i \neq j$.
$D>0$, square free, $\omega_{D}:=\left\{\begin{array}{ll}\sqrt{D}, & D \equiv 2,3(\bmod 4) \\ \frac{1+\sqrt{D}}{2}, & D \equiv 1(\bmod 4) .\end{array}, K:=\mathbb{Q}(\sqrt{D}), \quad \mathcal{O}_{K}:=\mathbb{Z}\left[\omega_{D}\right]\right.$,
$\mathcal{O}_{K}^{+}:=\left\{a+b \sqrt{D} \in \mathcal{O}_{K} \mid a+b \sqrt{D}>0, a-b \sqrt{D}>0\right\}$.
Quadratic form: $\quad Q\left(x_{\mathbf{1}}, \ldots, x_{r}\right)=\sum_{\mathbf{1} \leq i \leq j \leq r} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathcal{O}_{K}^{+}, \quad r$ is the rank of $Q$.
$Q$ is universal if it is totally positive definite and represents all the numbers in $\mathcal{O}_{K}^{+}$.
$Q$ is classical if $a_{i j} \in 2 \mathcal{O}_{K}$ for all $i \neq j$.
Universal quadratic forms exist over every $K$.
Example: If sum of $r$ squares $x_{1}^{2}+\cdots+x_{r}^{2}$ is universal over $K$ then:
(1) $K=\mathbb{Q}$ and $r=4$, or
(2) $K=\mathbb{Q}(\sqrt{5})$ and $r=3$. (Maass, Siegel, 1945).

Question: For a given $K$, what is the minimal possible $r$ ?
(1) Characterisation of classical universal ternary quadratic forms (exist only in $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{5}))$ (Chan, Kim, Raghavan, 1996).
(2) In every $\mathbb{Q}\left(\sqrt{n^{2}-1}\right), n^{2}-1$ squarefree, there is an universal form with $r=8$ (Kim, 1999).
(3) There are only finitely many $\mathbb{Q}(\sqrt{D})$ with an universal form with $r=7$ (Kim, Kim, Park, 2021).
$D>0$, square free, $\omega_{D}:=\left\{\begin{array}{ll}\sqrt{D}, & D \equiv 2,3(\bmod 4) \\ \frac{1+\sqrt{D}}{2}, & D \equiv 1(\bmod 4) .\end{array}, K:=\mathbb{Q}(\sqrt{D}), \quad \mathcal{O}_{K}:=\mathbb{Z}\left[\omega_{D}\right]\right.$,
$\mathcal{O}_{K}^{+}:=\left\{a+b \sqrt{D} \in \mathcal{O}_{K} \mid a+b \sqrt{D}>0, a-b \sqrt{D}>0\right\}$.
Quadratic form: $\quad Q\left(x_{\mathbf{1}}, \ldots, x_{r}\right)=\sum_{\mathbf{1} \leq i \leq j \leq r} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathcal{O}_{K}^{+}, \quad r$ is the rank of $Q$.
$Q$ is universal if it is totally positive definite and represents all the numbers in $\mathcal{O}_{K}^{+}$.
$Q$ is classical if $a_{i j} \in 2 \mathcal{O}_{K}$ for all $i \neq j$.
$R(K):=\min \{r \mid$ there exists universal q. f. over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there is classical univ. q. f. over $K$ of rank $r\}$
Theorem (Blomer-Kala, 2015; Kala, 2016). For every $R$ there exist infinitely many squarefree $D$ such that $R(\mathbb{Q}(\sqrt{D})) \geq R$.

Their method produced only a very sparse set of $D$ such that $R(\mathbb{Q}(\sqrt{D})) \geq R\left(\right.$ containing $\approx e^{-c R} \sqrt{X}$ discriminants $D \leq X$ for some $c>1)$.
$R(K):=\min \{r \mid$ there exists universal quadratic form over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there exists classical universal quadratic form over $K$ of rank $r\}$
Theorem (Blomer-Kala, 2015; Kala, 2016). For every $R$ there exist infinitely many squarefree $D$ such that $R(\mathbb{Q}(\sqrt{D})) \geq R$.

Let us focus on the case of classical quadratic forms.
Theorem A (Kala-Yatsyna-Ż., 2023) For every $R$ and $X$ let

$$
\mathcal{D}(R, X):=\#\left\{D \leq X \text { squarefree } \mid R_{c l}(\mathbb{Q}(\sqrt{D})) \leq R\right\} .
$$

Then for every $X \geq 2{ }^{12} R^{12}(\log X)^{4}$ we have

$$
\mathcal{D}(R, X)<300 R^{3 / 2} X^{7 / 8}(\log X)^{3 / 2}
$$

Theorem B (Kala-Yatsyna-Ż., 2023) Let $\varepsilon>0$. Then for almost all (in the sense of natural density) squarefree $D>0$,

$$
R(\mathbb{Q}(\sqrt{D})) \geq D^{\frac{1}{24}-\varepsilon}, \quad R_{c l}(\mathbb{Q}(\sqrt{D})) \geq D^{\frac{1}{12}-\varepsilon}
$$

Proof of Theorem B. Put $R=X^{\frac{1}{12}-\varepsilon}$ is Theorem A. $\square$
$R(K):=\min \{r \mid$ there exists universal quadratic form over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there exists classical universal quadratic form over $K$ of rank $r\}$
$\mathcal{D}(R, X):=\#\left\{D \leq X\right.$ squarefree $\left.\mid R_{c l}(\mathbb{Q}(\sqrt{D})) \leq R\right\}$
Theorem A (Kala-Yatsyna-Ż., 2023). For every $X \geq 2^{12} R^{12}(\log X)^{4}$ we have

$$
\mathcal{D}(R, X)<300 R^{3 / 2} X^{7 / 8}(\log X)^{3 / 2}
$$

Proof of Theorem A. Assume that $D \equiv 2,3(\bmod 4)$,
$K:=\mathbb{Q}(\sqrt{D})$.
Consider the continued fraction expansion of $\sqrt{D}$ :
$\sqrt{D}=u_{0}+\frac{1}{u_{1}+\frac{1}{u_{2}+\frac{1}{u_{3}+\cdots}}}=:\left[u_{0} ; \overline{u_{1}, \ldots, u_{s}}\right]$.
For example: $\sqrt{5}=2+(\sqrt{5}-2)=2+\frac{1}{\sqrt{5}+2}=2+\frac{1}{4+(\sqrt{5}-2)}=$ $2+\frac{1}{4+\frac{1}{\sqrt{5}+2}}=\ldots=2+\frac{1}{4+\frac{1}{4+\frac{1}{4+\ldots}}}=[2 ; \overline{4}]$.
Denote $u:=\max \left\{u_{2 j+1} \mid j \geq 0\right\}=u_{2 i+1}$.
Let $u_{0}+\frac{1}{u_{1}+\frac{1}{\cdots+\frac{1}{u_{k}}}}=\frac{p_{k}}{q_{k}}$ for every $k$ and
$B_{r}:=\left(p_{2 i-1}+q_{2 i-1} \sqrt{D}\right)+r\left(p_{2 i}+q_{2 i} \sqrt{D}\right)$ for $0 \leq r \leq u$.
Then $B_{r} \in \mathcal{O}_{K}^{+}$and there is $\delta \in K^{+}$such that $\operatorname{Tr}\left(\delta B_{r}\right)=1$ and $\operatorname{Tr}\left(\delta \mathcal{O}_{K}\right) \subseteq \mathbb{Z}$.
$R(K):=\min \{r \mid$ there exists universal quadratic form over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there exists classical universal quadratic form over $K$ of rank $r$ \}
$\mathcal{D}(R, X):=\#\left\{D \leq X\right.$ squarefree $\left.\mid R_{c l}(\mathbb{Q}(\sqrt{D})) \leq R\right\}$
Theorem A (Kala-Yatsyna-Zं., 2023). For every $X \geq 2^{\mathbf{1 2}} R^{\mathbf{1 2}}(\log X)^{4}$ we have

$$
\mathcal{D}(R, X)<300 R^{3 / 2} X^{7 / 8}(\log X)^{3 / 2}
$$

Proof of Theorem A. Assume that $D \equiv 2,3(\bmod 4), K:=\mathbb{Q}(\sqrt{D})$.
$\sqrt{D}=u_{\mathbf{0}}+\frac{\mathbf{1}}{u_{\mathbf{1}}+\frac{\mathbf{1}}{u_{\mathbf{2}}+\frac{\mathbf{1}}{u_{\mathbf{3}}+\cdots}}}=:\left[u_{\mathbf{0}} ; \overline{u_{\mathbf{1}}, \ldots, u_{s}}\right]$. Denote $u:=\max \left\{u_{\mathbf{2} j+\mathbf{1}} \mid j \geq 0\right\}=u_{\mathbf{2} i+\mathbf{1}}$.
Let $u_{\mathbf{0}}+\frac{\mathbf{1}}{u_{\mathbf{1}}+\frac{\mathbf{1}}{\cdots+\frac{\mathbf{1}}{u_{k}}}}=\frac{p_{k}}{q_{k}}$ and $B_{r}:=\left(p_{i}+q_{i} \sqrt{D}\right)+r\left(p_{i+\mathbf{1}}+q_{i+\mathbf{1}} \sqrt{D}\right)$ for $0 \leq r \leq u$.
Then $B_{r} \in \mathcal{O}_{K}^{+}$and there is $\delta \in K^{+}$such that $\operatorname{Tr}\left(\delta B_{r}\right)=1$ and $\operatorname{Tr}\left(\delta \mathcal{O}_{K}\right) \subseteq \mathbb{Z}$.
Let
$\varphi: \mathcal{O}_{K}^{R} \ni\left(a_{1}+b_{1} \sqrt{D}, \ldots, a_{R}+b_{R} \sqrt{D}\right) \mapsto\left(a_{1}, b_{1}, \ldots, a_{R}, b_{R}\right) \in$ $\mathbb{Z}^{2 R}$.

Let $Q$ be a classical universal q. f. over $\mathbb{Q}(\sqrt{D})$ of rank $R$. Let $Q\left(w_{r}\right)=B_{r}$.
Then $q(v):=\operatorname{Tr}\left(\delta Q\left(\varphi^{-1}(v)\right)\right)$ is classical and positive definite q . f. over $\mathbb{Q}$ of rank $2 R$. Moreover,

$$
q\left( \pm \varphi\left(w_{r}\right)\right)=\operatorname{Tr}\left(\delta Q\left(w_{r}\right)\right)=\operatorname{Tr}\left(\delta B_{r}\right)=1 .
$$

$R(K):=\min \{r \mid$ there exists universal quadratic form over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there exists classical universal quadratic form over $K$ of rank $r\}$
$\mathcal{D}(R, X):=\#\left\{D \leq X\right.$ squarefree $\left.\mid R_{c l}(\mathbb{Q}(\sqrt{D})) \leq R\right\}$
Theorem A (Kala-Yatsyna-Ż., 2023). For every $X \geq 2^{12} R^{12}(\log X)^{4}$ we have

$$
\mathcal{D}(R, X)<300 R^{3 / 2} X^{7 / 8}(\log X)^{3 / 2}
$$

Proof of Theorem A. Assume that $D \equiv 2,3(\bmod 4), K:=\mathbb{Q}(\sqrt{D})$.
$\sqrt{D}=u_{0}+\frac{\mathbf{1}}{u_{\mathbf{1}}+\frac{\mathbf{1}}{u_{\mathbf{2}}+\frac{\mathbf{1}}{u_{\mathbf{3}}+\cdots}}}=:\left[u_{\mathbf{0}} ; \overline{u_{\mathbf{1}}, \ldots, u_{s}}\right]$. Denote $u:=\max \left\{u_{\mathbf{2}_{j+\mathbf{1}}} \mid j \geq 0\right\}=u_{\mathbf{2}+\mathbf{1}}$.
Let $u_{0}+\frac{\mathbf{1}}{u_{\mathbf{1}}+\frac{\mathbf{1}}{\cdots+\frac{\mathbf{1}}{u_{k}}}}=\frac{p_{k}}{q_{k}}$ and $B_{r}:=\left(p_{i}+q_{i} \sqrt{D}\right)+r\left(p_{i+\mathbf{1}}+q_{i+\mathbf{1}} \sqrt{D}\right)$ for $0 \leq r \leq u$.
Then $B_{r} \in \mathcal{O}_{K}^{+}$and there is $\delta \in K^{+}$such that $\operatorname{Tr}\left(\delta B_{r}\right)=1$ and $\operatorname{Tr}\left(\delta \mathcal{O}_{K}\right) \subseteq \mathbb{Z}$.
Let $\varphi: \mathcal{O}_{K}^{R} \ni\left(a_{\mathbf{1}}+b_{\mathbf{1}} \sqrt{D}, \ldots, a_{R}+b_{R} \sqrt{D}\right) \mapsto\left(a_{\mathbf{1}}, b_{\mathbf{1}}, \ldots, a_{R}, b_{R}\right) \in \mathbb{Z}^{2 R}$.
Let $Q$ be a classical universal q. f. over $\mathbb{Q}(\sqrt{D})$ of rank $R$. Let $Q\left(w_{r}\right)=B_{r}$.
Then $q(v):=\operatorname{Tr}\left(\delta Q\left(\varphi^{-\mathbf{1}}(v)\right)\right)$ is classical and positive definite q. f. on $\mathbb{Z}^{\mathbf{2 R}}$ of rank $2 R$.
Moreover, $q\left( \pm \varphi\left(w_{r}\right)\right)=\operatorname{Tr}\left(\delta Q\left(w_{r}\right)\right)=\operatorname{Tr}\left(\delta B_{r}\right)=\mathbf{1}$.
We have constructed $2(u+1)>2 u$ arguments $v$ such that $q(v)=1$. Hence, $2 u<2 \cdot 2 R$, that is, $u<2 R$.

If $X \geq B^{12}(\log X)^{4}$ then

$$
\begin{aligned}
& \#\left\{D \leq X \mid \sqrt{D}=\left[u_{0} ; \overline{u_{1}, \ldots, u_{s}}\right], \max \left\{u_{2 i+1} \mid i \geq 0\right\} \leq B\right\} \\
& <100 B^{3 / 2} X^{7 / 8}(\log X)^{4} .
\end{aligned}
$$

Apply the above inequality with $B=2 R$.
$R(K):=\min \{r \mid$ there exists universal quadratic form over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there exists classical universal quadratic form over $K$ of rank $r\}$
$\mathcal{D}(R, X):=\#\left\{D \leq X\right.$ squarefree $\left.\mid R_{c l}(\mathbb{Q}(\sqrt{D})) \leq R\right\}$
Theorem A (Kala-Yatsyna-Ż., 2023). For every $X \geq \mathbf{2}^{\mathbf{1 2}} R^{\mathbf{1 2}}(\log X)^{4}$ we have

$$
\mathcal{D}(R, X)<300 R^{3 / 2} X^{7 / 8}(\log \bar{X})^{3 / 2}
$$

Theorem B (Kala-Yatsyna-Z., 2023) Let $\varepsilon>0$. Then for almost all (in the sense of natural density) squar efree $D>0$,

$$
R(\mathbb{Q}(\sqrt{D})) \geq D^{\frac{1}{24}-\varepsilon}, \quad \quad R_{c l}(\mathbb{Q}(\sqrt{D})) \geq D^{\frac{1}{12}-\varepsilon} .
$$

## Let $m \in \mathbb{N}$.

$Q$ is $m \mathcal{O}_{K}$-universal if it is totally positive definite and represents $m \mathcal{O}_{K}^{+}$.

If $Q$ is universal but is not classical then $2 Q$ is $2 \mathcal{O}_{K}$-universal and classical.
$R(K):=\min \{r \mid$ there exists universal quadratic form over $K$ of rank $r\}$
$R_{c l}(K):=\min \{r \mid$ there exists classical universal quadratic form over $K$ of rank $r\}$
$\mathcal{D}(R, X):=\#\left\{D \leq X\right.$ squarefree $\left.\mid R_{c l}(\mathbb{Q}(\sqrt{D})) \leq R\right\}$
Theorem A (Kala-Yatsyna-Ż., 2023). For every $X \geq 2^{12} R^{12}(\log X)^{4}$ we have

$$
\mathcal{D}(R, X)<300 R^{3 / 2} X^{7 / 8}(\log X)^{3 / 2}
$$

Theorem B (Kala-Yatsyna-Ż., 2023) Let $\varepsilon>0$. Then for almost all (in the sense of natural density) squarefree $D>0$,

$$
R(\mathbb{Q}(\sqrt{D})) \geq D^{\frac{1}{24}-\varepsilon}, \quad \quad R_{c l}(\mathbb{Q}(\sqrt{D})) \geq D^{\frac{1}{12}-\varepsilon} .
$$

$Q$ is $m \mathcal{O}_{K}$-universal if it is totally positive definite and represents $m \mathcal{O}_{K}^{+}$.
If $Q$ is universal but is not classical then $2 Q$ is $2 \mathcal{O}_{K}$-universal and classical.
$\mathcal{D}(R, m, X):=\#\left\{D \leq X\right.$ squarefree $\mid$ there exists $m \mathcal{O}_{K}-$ universal classical q. f. over $K=\mathbb{Q}(\sqrt{D})$ of rank $R\}$.

Theorem C (Kala-Yatsyna-Ż., 2023) For every $X \geq B(R, m)^{12}(\log X)^{4}$ we have
$\mathcal{D}(R, m, X)<100 B(R, m)^{3 / 2} X^{7 / 8}(\log X)^{3 / 2}$,
where $B(R, m):=\frac{1}{2} C(2 R, m)$, and

$$
C(R, m):= \begin{cases}2 R, & m=1, \\ \max \{480,2 R(R-1)\}, & m=2, \\ \sum_{k=0}^{R}\binom{R}{k} \frac{\pi}{\Gamma\left(\frac{k}{2}+1\right)} m^{\frac{k}{2}}, & m \geq 3 .\end{cases}
$$

Thank you for your attention.
arXiv: 2302.12080 (paper by Kala, Yatsyna, Ż.) arXiv: 2301.13222 (survey article by Kala)

